• Title/Summary/Keyword: Nitrogen status

Search Result 299, Processing Time 0.037 seconds

Effects of Dietary Intake and Work Activity on Seasonal Variation of Riboflavin Status in Rural Women (식이섭취와 작업할동량이 일부 농촌여성들의 리보플라빈 영양상태에 미치는 영향)

  • 임화재
    • Journal of Nutrition and Health
    • /
    • v.29 no.9
    • /
    • pp.1003-1012
    • /
    • 1996
  • We examined the relationship among riboflavin intake, work activity, erythrocyte glutathione reductase activity coefficient(EGR AC)and urinary riboflavin excretion. We also attempted to determine factors affecting seasonal riboflavin status of rural women. All information about nutrient intake, work activity and riboflavin biochemical status was repeatly collected in three seasons ; farming season(June), harvest season(October), nonfarming season(February). EGR AC was negatively correlated with riboflavin intake(P<0.005) and positively correlated with the duration(min) of farming activity(P<0.005) and the percentage of lean body mass(LBM) (%) representing long term physical activity(P<0.05) in harvestseason. Urinary riboflavin excretion was positively correlated with the ratio of riboflavin intake to 1,000kcal of energy expenditure (P<0.05) in farming season and negatively correlated with the duration(min) of farming activity (P<0.05) and crude nitrogen balance(P<0.005) in harvest season. It appeared that EGR AC seems to increase and urinary riboflavin excretion seems to decrease as work activity increase. Therefore work activity would be expected to deteriorate riboflavin status. Multiple regression analysis of variables showed that in general EGR AC was affected by riboflavin and energy intakes, energy expenditure, energy balance, the duration(min) of farming activity, LBM (%). Urinary riboflavin excretion was affected by riboflavin and protein intakes, LBM(kg) and crude nitrogen balance. Crude nitrogen balance affected urinary riboflavin excretion in all seasons. The result indicated that work activity as well as nutrient intake seemed to affect riboflavin status, especially EGR AC was affected preferentially be work activity in all seasons.

  • PDF

A Study on the Taxonomic Status for Nitrogen-Fixing, Methanol Utilizing Oligotrophic Bacteria (저영양세균중(低營養細菌中) 질소고정균(窒素固定菌) 및 메타놀이용균(利用菌)의 분류학적위치(分類學的位置)에 관(關)하여)

  • Shin, Gawan Chull;Whang, Kyung Sook;Hattori, Tsutomu
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.163-168
    • /
    • 1989
  • Fourty-four isolates showed acetylene-reducing(nitrogenase)activity under the atmosphere of 89% Ar, 10% $C_2H_2$ and 1 % $O_{2{\cdot}}$, these nitrogen-fixing isolates characterized chemotaxonomically and their taxonomic status was disscussed; twenty-three isolates corresponded to Azospirillum. They were curved/spiral rods, gram negative, motile by a polar flagellum, and also utilized glucose in nitrogen free medild by a polar flagellum, and also utilized glucose in nitrogen free medium. but the cellular fatty acid composition and quinone system of these isolates showed quite different characteristics with reference strains. Therefore, the taxonomic status of this nitrogen-fixing bacteria is disscussed and a new species Azospirillum. Sixty forur isolates utilized C-l compounds such as methanol and formic acid. phenotypic and chemotaxonomic characteristics of methanol utilizing isolates were investigated and their taxonomic status was discussed; Twenty-one isolates corresponded to Hyphomicrobium and for the other regular rods and irregular rods utilizing isolates showed different cellular fatty acid composition. These isolates were grouped into 8 cluster analysis and similarity values based on correlation coefficients. Among these 8 clusters, two corresponded Pseudomonas and for the other were not decided.

  • PDF

Growth, Carbon and Nitrogen Status of Container Grown Black Pine (Pinus thunbergii) Seedlings at Various Levels of Foliar Fertilization

  • Kim, Choonsig;Jeong, Jaeyeob;Moon, Tae-Shik;Park, Jun-Ho;Lim, Jong-Taek;Kim, Jong-Ik;Goo, Gwan-Hyo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.558-562
    • /
    • 2009
  • The growth, carbon and nitrogen status of container grown black pine (Pinus thunbergii) seedlings were examined at various levels of foliar fertilization (control, 0.1%, 0.2%, 0.3%). Root collar diameter, height and dry weight of black pine seedlings increased significantly with increasing levels of foliar fertilization (P<0.05). Carbon concentration in needle of black pine seedlings was significantly higher in the foliar fertilization than in the control treatments (P<0.05), while other seedling components such as stem and roots were not significantly different (P>0.05) between the foliar fertilization and the control treatments. Nitrogen concentration and content were significantly greater in the foliar fertilization than in the control treatments (P<0.05). Shoot/root ratio of black pine seedlings (needle+stem dry weight/root dry weight) was greater in the foliar fertilization (2.40-2.89) than in the control treatments (1.87). However, nitrogen use efficiency was significantly lower (P<0.05) in the foliar fertilization (28-46) than in the control (111) treatments. The results indicate that morphological characteristics and nutritional status on container grown black pine seedlings were enhanced by various levels of foliar fertilization.

Use of Hairy Vetch Green Manure as Nitrogen Fertilizer for Corn Production

  • Seo, Jong-ho;Lee, Ho-jin;Hur, Il-bong;Kim, Si-ju;Kim, Chung-kuk;Jo, Hyeon-suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.294-299
    • /
    • 2000
  • Hairy vetch (Vicia villosa Roth) winter annual is very effective on reducing chemical nitrogen fertilizer for subsequent com by fixed organic green manure nitrogen fixed during hairy vetch growth. In this experiment, hairy vetch produced above-ground dry matter of 5 ton/ha, nitrogen yield 200 kgN/ha, at com planting on the average during 1997 and 1998. Changes in com yield and nitrogen uptake for two years were investigated after application of nitrogen fertilizer 0, 60, 120, 180, 240 kgN/ha on plot of winter fallow and hairy vetch green manure, respectively. Nitrogen status such as ear-leaf N%, SPAD value at silk and dough stage, and com yield decreased in proportion to reduction of nitrogen fertilizer at winter fallow, but nitrogen status and yield of com were not different among nitrogen fertilizer rate at hairy vetch green manure. Com yield (total dry matter) at 0 kgN/ha plot of hairy vetch was 22, 20 ton/ha in 1997, 1998, respectively and com could produce more dry matter 9, 13 ton/ha by hairy vetch green manure compared with winter fallow under the condition of no nitrogen fertilizer in 1997, 1998, respectively. Com yield (total dry matter) at 60kgN/ha of hairy vetch green manure was higher than that of high N fertilizer rate such as 180, 240 kgN/ha of winter fallow. Nitrogen uptake of com at plot of hairy vetch-no nitrogen fertilizer slightly decreased than at plot of hairy vetch - nitrogen fertilizer, but com absorbed more nitrogen of 141, 159 kgN/ha by hairy vetch green manure compared with winter fallow under no nitrogen fertilizer condition in 1997, 1998, respectively. Nitrogen fertilizer reduction for com by hairy vetch green manure was 149, 161kgN/ha in 1997, 1998, respectively. Still more, com could absorb more soil nitrogen by nitrogen fertilizer 60kgN/ha of hairy vetch green manure than by high nitrogen fertilizer such as 180, 240 kgN/ha at winter fallow. It is concluded that nitrogen fertilizer for corn could be reduced by winter cultivation and soil incorporation of hairy vetch at com planting.

  • PDF

Nondestructive and Rapid Estimation of Chlorophyll Content in Rye Leaf Using Digital Camera

    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • We have developed and tested a new method for nondestructive estimation of chlorophyll- and nitrogen-contents in rye leaf. It was found that the relation-ships among nitrogen, chlorophyll content and fresh weight were significantly positive correlated. Nitrogen and chlorophyll content were positively correlated whereas correlation coefficients among R, G, R-B and G-B on the basis of photo-numerical values were negative. We have found that R/(R-B) obtained from data of digital camera is the best criterion to estimate the chlorophyll content of leaves. The regression curves of the relation between R/(R-B) and chlorophyll content were also calculated from the data collected on cloudy days. The coefficients of determination ($\textrm{r}^2$) were ranged from 0.33 to 0.99. In this study, the accuracy in estimating chlorophyll content from the color data of digital camera image could be improved by correcting with R, G, and B values. It is suggested that, for practical purposes, the image values estimated with sufficient accuracy using a portable digital camera can be applied for determining chlorophyll content and nitrogen status in plant leaves.

Changes in Radiation Use Efficiency of Rice Canopies under Different Nitrogen Nutrition Status (질소영양 상태에 따른 벼 군락의 광 이용효율 변화)

  • Lee Dong-Yun;Kim Min-Ho;Lee Kyu-Jong;Lee Byun-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.190-198
    • /
    • 2006
  • Radiation use efficiency (RUE), the amount of biomass produced per unit intercepted photosynthetically active radiation (PAR), constitutes a main part of crop growth simulation models. The objective of the present study was to evaluate the variation of RUE of rice plants under various nitrogen nutritive conditions. from 1998 to 2000, shoot dry weight (DW), intercepted PAR of rice canopies, and nitrogen nutritive status were measured in various nitrogen fertilization regimes using japonica and Tongil-type varieties. These data were used for estimating the average RUEs before heading and the relationship between RUE and the nitrogen nutritive status. The canopy extinction coefficient (K) increased with the growth of rice until maximum tillering stage and maintained constant at about 0.4 from maximum tillering to heading stage, rapidly increasing again after heading stage. The DW growth revealed significant linear correlation with the cumulative PAR interception of the canopy, enabling the estimation of the average RUE before heading with the slopes of the regression lines. Average RUE tended to increase with the increased level of nitrogen fertilization. RUE increased approaching maximum as the nitrogen nutrition index (NNI) calculated by the ratio of actual shoot N concentration to the critical N concentration for the maximum growth at any growth stage and the specific leaf nitrogen $(SLN;\;g/m^2\;leaf\;area)$ increased. This relationship between RUE (g/MJ of PAR) and N nutritive status was expressed well by the following exponential functions: $$RUE=3.13\{1-exp(-4.33NNNI+1.26)\}$$ $$RUE=3.17\{1-exp(-1.33SLN+0.04)\}$$ The above equations explained, respectively, about 80% and 75% of the average RUE variation due to varying nitrogen nutritive status of rice plants. However, these equations would have some limitations if incorporated as a component model to simulate the rice growth as they are based on relationships averaged over the entire growth period before heading.

Relationship between Phycoerythrin and Nitrogen Content in Gloiopeltis furcata and Porphyra yezoensis

  • Hiroyuki Mizuta
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.89-93
    • /
    • 2002
  • Seasonal changes of pigment compositionin two intertidal red algae, Gloiopeltis furcata (Postels et Ruprecht) J. Agardh, and Porphyra yezoensis Ueda, were investigated. Chlorophyll α and phycoerythrin levels were high during winter, but decreased in late spring or summer, with accompanying discoloration from deep red to green or yellow. This discoloation corresponded closely to the fluctuationof phycoerythrin content. Nevertheless, photosynthesis capacity was maintained by the increasing water temperature in the field, suggesting that large amounts of phycoerythrin are not necessary for photosynthesis. Phycoerythrin conten correlated significantly with nitrogen content in both species when the nitrogen level was greater than the level of critical content (1.30% DW in G. furcata, and 2.26% DW in P. yezoensis), indicating that phycoerythrin plays a more important role in the nitrogen status as a nitrogen pool than that of nitrogen critical content. Furthermore, the dependence level of the alage on phycoerythrin as a nitrogen pool was greater in P. yezoensis than in G. furcata because of the remarkable increase of phycoerythrin content in P. yezoensis with increasing jnitrogen content.

Effects of Nitrogen Supplementation Status on CO2 Biofixation and Biofuel Production of the Promising Microalga Chlorella sp. ABC-001

  • Cho, Jun Muk;Oh, You-Kwan;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1235-1243
    • /
    • 2020
  • The use of microalgal biomass as feedstock for biofuels has been discussed for decades as it provides a sustainable approach to producing fuels for the future. Nonetheless, its feasibility has not been established yet and various aspects of biomass applications such as CO2 biofixation should also be explored. Therefore, in this study, the CO2 biofixation and lipid/carbohydrate production potential of Chlorella sp. ABC-001 were examined under various nitrogen concentrations. The highest biomass productivity and CO2 biofixation rate of 0.422 g/l/d and 0.683 g/l/d, respectively, were achieved under a nitrogen-rich condition (15 mM nitrate). Carbohydrate content was generally proportional to initial nitrate concentration and showed the highest value of 41.5% with 15 mM. However, lipid content showed an inverse relationship with nitrogen supplementation and showed the highest value of 47.4% with 2.5 mM. In consideration as feedstock for biofuels (bioethanol, biodiesel, and biogas), the sum of carbohydrate and lipid contents were examined and the highest value of 79.6% was achieved under low nitrogen condition (2.5 mM). For lipid-based biofuel production, low nitrogen supplementation should be pursued. However, considering the lower feasibility of biodiesel, pursuing CO2 biofixation and the production of carbohydrate-based fuels under nitrogen-rich condition might be more rational. Thus, nitrogen status as a cultivation strategy must be optimized according to the objective, and this was confirmed with the promising alga Chlorella sp. ABC-001.

Relationship between Leaf Chlorophyll Reading Value and Soil N-supplying Capability for Tomato in Green House (시설재배 토마토 잎의 엽록소 측정치와 토양 질소공급능력의 상호관계)

  • Hong, Soon-Dal;Kim, Ki-In;Park, Hyo-Taek;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.85-91
    • /
    • 2001
  • To find diagnosing method of nitrogen status in tomato plant for determining optimum application rate of side dress, chlorophyll reading values were measured by portable chlorophyll meter(SPAD 502, Minolta), and compared with nitrogen supplying capability of soils. Regression between dry weight, amount of nitrogen uptake, and chlorophyll reading at stalk positions of tomato grown on the condition of no fertilization were evaluated For 6 green house soils with different nitrate concentrations ranged from $55mg\;kg^{-1}$ to $306mg\;kg^{-1}$. The chlorophyll reading of tomato leave was significantly correlated with amount of nitrogen per unit area of leave suggesting that chlorophyll content is useful for nitrogen diagnosis of tomato plant. The chlorophyll reading showed peak at the 15th leaf of stalk position on the 45th days after transplanting and this suggested that below or near the 15th leaf and before or near the 45th days after transplanting is the critical stalk position and time for diagnosing nitrogen status of tomato by chlorophyll test. The chlorophyll reading at the 14th leaf on the 40th days after transplanting was significantly correlated with soil nitrate status, dry weight and amount of nitrogen uptake by tomato grown with no fertilization. From the above correlation, the chlorophyll reading value of 57.1 at the 14th leaf of tomato was estimated as the critical level for maximum dry weight and amount of nitrogen uptake by tomato grown with no fertilization. Consequently, chlorophyll reading of tomato leaves measured by portable chlorophyll meter was thought to be available as a rapid plant test for predicting the nitrogen supplying capability of green house soils.

  • PDF

Nutritional Status and Requirements of Protein and Energy in Female Korean College Students Maintaining Their Usual and Activity(2) : Nitrogen Intake and Balance (자유로운 식이와 활동을 유지하는 한국 여대생의 에너지와 단백질대사에 대한 연구(2) : 질소섭취와 평형)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • v.28 no.4
    • /
    • pp.259-267
    • /
    • 1995
  • A study was conducted to investigate nitrogen balance and to estimate daily nitrogen requirement in 43 Korean female college students students maintaining their usual diet and activity levels. Nitrogen intake and excretion were measured in two separate peroids about one month apart, each period lasting for 3 days. Nitrogen intake was assessed by duplicate portion analysis of diet, and N excretion in faces and urine were measured during the study period. Mean daily nitrogen intake level was 129.3mg/kg B.W and the apparent digestibility of nitrogen was 76%. Mean daily urinary nitrogen excretion was 113.5mg/kg BW. 895 of total nitrogen intake. Mean daily nitrogen balance of subjects was -14.5mg/kg BW. Mean daily requirements of nitrogen for 0 balance, calculated by regression analysis of N balance and energy-adjusted N intake. were 1) 197.mg/kg B.W with the present energy intake level of the study subjects. 2) 157mg/kg B.W when energy intake is sufficient to maintain energy balance, and 30 130mg/kg B.W. when energy intake is Korean RDA level for moderate activity. When energy intake level is sufficient to meet their requirement, daily protein requirement for 0 balance is about 1.0g/kg B.W. The results of this study indicate that nitrogen intake level of young female college students is not sufficient to meet their requirements, and they should increase protein intake together with increase in energy intake.

  • PDF