Browse > Article
http://dx.doi.org/10.4490/ALGAE.2002.17.2.089

Relationship between Phycoerythrin and Nitrogen Content in Gloiopeltis furcata and Porphyra yezoensis  

Hiroyuki Mizuta (Laboratory of Breeding Science, Graduate School of Fisheries Sciences, Hokkaido University)
Publication Information
ALGAE / v.17, no.2, 2002 , pp. 89-93 More about this Journal
Abstract
Seasonal changes of pigment compositionin two intertidal red algae, Gloiopeltis furcata (Postels et Ruprecht) J. Agardh, and Porphyra yezoensis Ueda, were investigated. Chlorophyll α and phycoerythrin levels were high during winter, but decreased in late spring or summer, with accompanying discoloration from deep red to green or yellow. This discoloation corresponded closely to the fluctuationof phycoerythrin content. Nevertheless, photosynthesis capacity was maintained by the increasing water temperature in the field, suggesting that large amounts of phycoerythrin are not necessary for photosynthesis. Phycoerythrin conten correlated significantly with nitrogen content in both species when the nitrogen level was greater than the level of critical content (1.30% DW in G. furcata, and 2.26% DW in P. yezoensis), indicating that phycoerythrin plays a more important role in the nitrogen status as a nitrogen pool than that of nitrogen critical content. Furthermore, the dependence level of the alage on phycoerythrin as a nitrogen pool was greater in P. yezoensis than in G. furcata because of the remarkable increase of phycoerythrin content in P. yezoensis with increasing jnitrogen content.
Keywords
discoloration; Gloiopeltis furcata; nitrogen; phycoerythrin; pigment composition; Porphyra yezoensis; red algae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Neish A.C., Shacklock P.F., Fox C.H. and Simpson F.J. 1977. The cultivation of Chondrus cripus. Factors affecting growth under greenhouse conditions. Can. J. Bot. 55: 2263-2271.   DOI
2 Wong S.L. and Clark B. 1976. Field determination of the critical concetrations for Cladophora in streams. J. Fish. Res. Board Can. 33: 85-92.   DOI
3 Nozawa K. 1959. Nutrient uptake and ferilizing of Porphyra. Theaquiculture 7: 1-12 (in Japanese)
4 Bird K.T., Habig C. and DeBusk T. 1982. Nitrogen allocation and storage patterns in Gracilaria tikvahiae (Rhodophyta). J. Phycol. 18: 344-348.   DOI
5 Chapman A.R.O., Markham J.W. and Luning K. 1978. Effects of nitrate concentration on the growth and physiology of Laminaria saccharina (Phaeophyta) in culture. J. Phycol. 14: 195-198.   DOI
6 Mizuta H., Maita Y. and Yanada M. 1992. Seasonal changes of nitrogen metabolosm in the sporophyte of Laminaria japonica (Phaeophyceae). Nippon Suisan Gakkaishi 58: 2345-2350.
7 Ramus J., Beale S. I., Mauzerall D. and Howard K.L. 1976a. Chages in photosynthetic pigment concentration in sea-weeds as a function of water depth. Mar. Biol. 37: 223-229.   DOI
8 Probyn T.A. and Chapman A.R.O. 1983. Summer growth of Chordaria in a flagelloformis ( O. F. Muell) C Ag.: Physiological strategies in a nutrient stressed environment. J. Exp. Mar. Biol. Ecol. 73: 243-271.   DOI   ScienceOn
9 Amano H. and Noda H. 1987. Effect of nitrogenous fertilizers on the recovery of discoloured fronds of Porphyra yezoensis. Bot. Mar. 30: 467-473.   DOI
10 Lapointe B.E. 1985. Strategies for pulsed nutrients supply to Gracilaria cultures in the Florida Keys: Interactions between concentration and frequency of nutrient pulses. J. Exp.Mar. Biol. Ecol. 93: 211-222.   DOI   ScienceOn
11 DeBoer J.A. 1981. Nutrients. In: Lobban C.S. and Wynne M.J (eds), The Biology of Seaweeds. Blackwell Scientific, Oxford. pp. 356-396.
12 Evans L.V. 1988. The effects of spectral composition and irradi-ance level on pigment levels in seaweeds. In: Lobban C.S., Chapman D.J. and Kremer P. (eds) Experimental phycology : A laboratory manual. Cambridge University Press, Cambridge. pp. 123-133.
13 Hanisak M.D. 1979. Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis. Mar. Biol. 50: 333-337.   DOI
14 Lapointe B.E. 1981. The effects of light and nitrogen in growth, pigment content, and biochemical composition of Gracilaria foliifera v. angustissima (Gigartinales, Rhodophyta). J. Phycol. 17: 90-95.   DOI
15 Rosenberg G., Probyn T.A. and Mann K.H. 1984. Nutrient uptake and growth kinetics in brown seaweeds : reponse to continuous and single addition of ammonium. J. Exp. Mar. Biol. Ecol. 80: 125-146.   DOI   ScienceOn
16 Vergara J.J., Niell F.X. and Torres M. 1993. Culture of Gelidium sesquipedale (Clem.) Born et Thur. in a chemostat system. Biomass production and metaboloc responses affected by N flow. J. appl. Phycol. 5: 405-415.   DOI   ScienceOn
17 Beer S. and Eshel A. 1985. Determination phycoerythin and phycocyanin concentrations in aqueous srude extracts of red alga. Aus. J. Mar. Freshw. Res. 36: 785-92.   DOI
18 Rico J.M. and Fernandez C. 1996. Seasonal nitrogen metabolism in as intertidal popution of Gelidium latifolium (Gelidiaceae, Rhodophyta). Eur. J. Phycol. 31: 149-155.   DOI   ScienceOn
19 Hanisak M.D. 1990. The use of Gracilaria tikcahiae (Gracilariales, Rhodophyta) as a model system to understand the nitro-gen nutrition of cultured seaweeds. Hydrobiologia 204/205: 79-87.   DOI
20 Gordon D.M., Brich P.B. and McComb A.J. 1981. Effects of inor-ganic phosphorus and nitrogen on the growth of an estuar-ine Cladophora in culture. Bot. Mar. 14; 93-106.
21 Ramus J., Beale S.I. and Mauzerall D. 1976b. Correlation of changes in pigment content with photosynthetic capacity of seaweeds as as function of water depth. Mar. Biol. 37: 231-238.   DOI
22 Parsons T.M., Maita Y. and Lalli C.M. 1984. A Mannual for Chemical Biological Methods for Seawater Analysis. Pergamon Press, New York.