• Title/Summary/Keyword: Nitrogen release

Search Result 342, Processing Time 0.028 seconds

Comparison of Fermentation Characteristics of Italian Ryegrass (Lolium multiflorum Lam.) and Guineagrass (Panicum maximum Jacq.) during the Early Stage of Ensiling

  • Shao, Tao;Zhang, Z.X.;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1727-1734
    • /
    • 2005
  • The fermentation characteristics and mono- and di-saccharides compositions during the early stage of ensiling were studied with a temperate grass, Italian ryegrass (Lolium multiflorum Lam.) and a tropical grass, guineagrass (Panicum maximum Jacq.). The laboratory silos were kept in the room set at 25$^{\circ}C$, and then were opened on 0.5, 1, 2, 3, 5 and 7 days (14 days in Italian ryegrass) after ensiling, respectively. The Italian ryegrass silage showed a fast and large pH decrease caused by a fast and large production of lactic acid during the first 5 days of ensiling and succeeded to achieve lactic acid type fermentation; high lactic acid/acetic acid and lactic acid content at the end of ensiling (14 days), low values of pH (3.74), acetic acid, ethanol and ammonia-N/total nitrogen, none or only small amounts of Butyric acid, valeric acid and propionic acid. The guineagrass silage showed a slow decrease in pH and a slow increase in lactic acid content during the full ensiling period, causing a high final pH value, low contents of lactic acid, acetic acid, total volatile fatty acids and total organic acids. In Italian ryegrass silage, mono- and di-saccharides compositions decreased largely within the initial 0.5 day (12 h) of ensiling. Sucrose disappeared rapidly within the initial 0.5 day of ensiling, but fructose and glucose contents showed an initial rise by the activity of enzymes in plant tissues, and then decreased gradually. On the other hand, the contents of monoand di-saccharides in guineagrass showed the largest decreases due mainly to plant respiration within the initial 0.5 day of ensiling, and no initial rises in fructose and glucose contents during the early stage of ensiling because of the absence of fructans which are hydrolyzed into fructose and glucose in temperate grasses. In both silages, the rate of reduction in mono- and di-saccharides compositions within the initial 5 days of ensiling was ranked in the order of glucose>fructose>sucrose, suggesting that glucose and fructose might be more favorably utilized than sucrose by microorganisms and glucose is the first fermentation substrate. It was concluded that the silage made from Italian ryegrass with high moisture content had a good fermentation quality owing to the dominance of lactic acid bacteria and active lactic acid fermentation during the initial stage of ensiling. These results can be explained by rapid plant sap liberation and the high activity of plant enzyme hydrolyzed fructans into fructose and glucose within the initial 2 days of ensiling, which stimulate the homofermentative lactic acid bacteria growth. In ensiling a temperate grass, the physical characteristics may ensure the rapid onset of fermentation phase, which results from the smaller losses of water-soluble carbohydrates during the initial stage of ensiling and providing sufficient water-soluble carbohydrates for lactic acid bacteria. The silage made from guineagrass with intermediate dry matter and high initial mono- and di-saccharides content was stable silage. This could be explained by the higher incorporation of air during the very early stage of ensiling and the restriction of cell breakdown and juice release due to the properties of a tropical grass with coarse porosity and stemmy structures. These physical characteristics delayed the onset of lactic acid bacteria fermentation phase by extending the phases of respiration and aerobic microorganisms activity, causing the higher loss of water-soluble carbohydrates and the shortage of lactic acid bacteria fermentation substrates.

Nitrification of the Soil Applied Urea for Winter Barley as Basal Dressing and Following Nitrate Release to the Environment (추파대맥(秋播大麥) 재배시 기비(基肥)로 시용(施用)한 요소(尿素)의 질산화(窒酸化)및 그에 따른 질산태질소(窒酸態窒素)의 환경(環境)에의 방출(放出))

  • Kim, Sok-Dong;Soh, Chang-Ho;Kwon, Yong-Woong;Lim, Ung-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.112-120
    • /
    • 1993
  • The use of fertilizer N is essential for maximum economic yield of crops. Meanwhile, enrichment of $NO_3^-$in the environment has to be avoided. Winter barley crop has a short duration of growth before winter, but is used to receive N greater than 60 kg/ha at seeding. Experiments were performed to determine the quantitative aspect of the fate of soil applied urea N among the residual, leached, and uptaken by winter barley (cv. Olbori), and to evaluate the effect of soil temperature on nitrification. Four levels of urea (0, 40, 80, and 120 kg N/ha) was basal-dressed to Olbori. $NH_4^+$ appeared dominant in the soil until 40 days after seeding, whereas $NO_3^-$ did thereafter. Nitrification rate at $5^{\circ}C$ of soil temperature was 40 to 50% of that at $15^{\circ}C. Linear increases in the number of ammonia oxidizing and nitrite oxidizing bacteria of the soil was present as the level of urea fertilization was higher. Less than 60% of N applied at seeding was uptaken by winter barley until mid-March but 50% was lost from death of older barley leaves during overwintering. Thereby only 10% of the applied N remained in the barley in spring. Only 15% of the applied N was present in the rhizosphere. The 17 to 20% of the soil applied N leached out as $NO_3^-$ the rhizosphere. Nitrogen leaching during winter was estimated to be 16 and 20 kg/ha when the basal application level of urea fertilization was 80 and 120 kg/ha, respectively.

  • PDF

STUDIES ON THE UTILIZATION OF ANTARCTIC KRILL 1. Compositional Characteristics of Fresh Frozen and Preboiled Frozen Krill (남대양산 크릴의 이용에 관한 연구 1. 크릴의 식품원료학적인 성상)

  • PARK Yeung-Ho;LEE Eung-Ho;LEE Kang-Ho;PYEUN Jae-Hyeung;RYU Hong-Soo;CHOI Su-An;KIM Seun-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.191-200
    • /
    • 1979
  • For the use of antarctic krill as a fond protein source its compositional characteristics were investigated as the first part of the work includes other subjects such as processing of drill paste, concentrates, and fermented or seasoned product. In general composition of fresh frozen and preboiled frozen krill on board, the contents of crude fat and free amino nitrogen were higher in the former than in the latter which contained a high amount of ash. VBN was rather high as much as 37.6 and $26.4\;mg\%$ in both fresh frozen and preboiled krill. The pH of drill homogenates was 7.1 to 7.2 in both cases. Such a low pH might be attributed to a long term storage and temperature fluctuations during frequent transshipping. The amino acid competition of fresh frozen krill meat showed relatively high amount of glutamic acid, aspartic acid, lysine, proline, and leucine while methionine, histidine, serine, tyrosine, and phenylalanine were lower. Among the essential amino acids lysine and leucine were higher and methionine was lower. In tile composition of free amino acid proline, lysing, arginine, and alanine were higher comparatively to the contents of histidine, aspartic acid, serine, and threonine. It is noteworthy for nutritional qualification that tile essential amino acids particularly as lysine were abundant similarly to that of fishes. Heavy metal contents of krill meat 0.039 to 0.048 ppm as Hg, 0.06 to 0.11 ppm as Pb, less than 0.32 ppm as Zn, 0.008 to 0.012 ppm as Cd, 0.61 to 0.68 ppm as Fe, 0.87 to 1.37 ppm as Cu, and nondetective as Cr. A high Cu content seems to be resulted by tile blood pigment of crustacea. The ratio,1 of edible portion to non-edible portion were 37:63 in fresh frozen and 42:58 in preboiled frozen krill respectively. Release of drip after thawing was more in fresh frozen than in preboiled frozen drill marking $36\%$ and $24\%$ of both respectively.

  • PDF

Livestock Manure Nutrients Flow Analysis of Integrated Crop-Livestock Farming Model Reflecting the Regional Characteristics (지역특성을 고려한 경축순환농업 모형의 가축분뇨 양분 흐름분석)

  • Lee, Joon Hee;Choi, Hong Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.36-46
    • /
    • 2015
  • Integration of crop-livestock farming has been a problem-solving mode for abatement of environmental pollution and recovery of resources in recent years. The objectives of this study were 1) to suggest the customized integration of crop-livestock farming model reflecting the regional characteristics through in-depth analysis of case study and 2) to analyze the livestock nutrients flow in terms of three primary elements as nitrogen(N), phosphorous(P), and potassium(K). The personal interview and survey were carried out in 2012 for a total of 161 farms from four different regions(NS, NW, JJ, YC) in South Korea. The mass balance analysis was used to suggest and evaluate the models for two sites(JJ and YC). The results showed that NS and NW sites produced relatively more livestock manure than the sites of YC and JJ because of the regional differences in livestock numbers and urbanization. The models were suggested for the site JJ and site YC, and 'two track model(energy and resource recovery)' and 'dispersal type model' were assigned respectively. For the nutrient flows, the releasing P and K with new models had increased up to 7%, while N release had decreased down to 15% in both YC and JJ sites compared to the present treatment system. Estimated value showed that there was oversupply of N (719 ton/yr) and $P_2O_5$ (1,269 ton/yr) in YC and deficiency of N (671 ton/yr) and excessive $P_2O_5$ (32 ton/yr) in JJ respectively. Therefore, P runoff has to be considered an eutrophication occurs in rural small stream when an integration of crop-livestock farm system is applied into both sites.

Study on the Consequence Effect Analysis & Process Hazard Review at Gas Release from Hydrogen Fluoride Storage Tank (최근 불산 저장탱크에서의 가스 누출시 공정위험 및 결과영향 분석)

  • Ko, JaeSun
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.449-461
    • /
    • 2013
  • As the hydrofluoric acid leak in Gumi-si, Gyeongsangbuk-do or hydrochloric acid leak in Ulsan, Gyeongsangnam-do demonstrated, chemical related accidents are mostly caused by large amounts of volatile toxic substances leaking due to the damages of storage tank or pipe lines of transporter. Safety assessment is the most important concern because such toxic material accidents cause human and material damages to the environment and atmosphere of the surrounding area. Therefore, in this study, a hydrofluoric acid leaked from a storage tank was selected as the study example to simulate the leaked substance diffusing into the atmosphere and result analysis was performed through the numerical Analysis and diffusion simulation of ALOHA(Areal Location of Hazardous Atmospheres). the results of a qualitative evaluation of HAZOP (Hazard Operability)was looked at to find that the flange leak, operation delay due to leakage of the valve and the hose, and toxic gas leak were danger factors. Possibility of fire from temperature, pressure and corrosion, nitrogen supply overpressure and toxic leak from internal corrosion of tank or pipe joints were also found to be high. ALOHA resulting effects were a little different depending on the input data of Dense Gas Model, however, the wind direction and speed, rather than atmospheric stability, played bigger role. Higher wind speed affected the diffusion of contaminant. In term of the diffusion concentration, both liquid and gas leaks resulted in almost the same $LC_{50}$ and ALOHA AEGL-3(Acute Exposure Guidline Level) values. Each scenarios showed almost identical results in ALOHA model. Therefore, a buffer distance of toxic gas can be determined by comparing the numerical analysis and the diffusion concentration to the IDLH(Immediately Dangerous to Life and Health). Such study will help perform the risk assessment of toxic leak more efficiently and be utilized in establishing community emergency response system properly.

Ammonia Volatilization from Coated Urea in Paddy Soil of Direct Seeding Rice Culture (벼 건답직파재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Jeon, Weon-Tae;Son, Il-Soo;Park, Sung-Tae;Lee, Suk-Soon;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.328-333
    • /
    • 2005
  • Ammonia volatilization is the major form of nitrogen (N) loss from flooded paddy soils and causes low N use efficiency. The effects of controlled release fertilizer (latex coated urea complex fertilizer, LCU) on reducing N loss by ammonia volatilization was measured comparing with urea in rice culture system of direct seeding on dry soil. In the treatment of urea, $NH_4-N$ concentration in surface water after flooding increased rapidly up to $8-10mg\;L^{-1}$ as affected by topdressing, while in the LCU treatment $NH_4-N$ concentration in surface water was less than $1mg\;L^{-1}$ during rice growing season. Relation of $NH_4-N$ concentration in surface water and ammonia volatilization was significant in urea treatment. The amount of ammonia volatilized from rice paddy of LCU treatment was $2.4-3.0kg\;ha^{-1}$ and the rate of ammonia volatilization from N fertilizer applied was only 2.0-2.3% compared with 5.9-7.9% in urea treatment. Therefore, N loss by ammonia volatilization could be reduced by 72-76% with by LCU compared with urea in rice culture system of direct seeding on dry soil.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Comparison of Filtering Abilities of Korean Freshwater Bivalves and Their Filtering Effects on Water Quality (국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향)

  • Kim, Ho-Sub;Choi, Kwang-Hyun;Park, Jung-Hwan;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.92-102
    • /
    • 2002
  • This study was conducted to compare filtering abilities of three species of freshwater mussels (Cobicula fluminea, Corbicula leana and Unio douglasiae) and to evaluate their filter feeding effects on water quality change in experimental enclosure systems. Mussel feeding in both laboratory and enclosure resulted in decrease of particulate material, such as chlorophyll, total P, SS. In the treatment with 600 individuals of mussels, chllorophyll concentration and net primary productivity decreased from $87.3{\pm}4.5\;{\mu}g/L$ and $106.3{\pm}8.8\;{\mu}gC\;L^{-1}\;hr^{-1}$ to nearly the same level as the mussel-free enclosure ($25.0{\pm}0.5\;{\mu}g/L$ and $15.6{\pm}13.3\;{\mu}gC\;L^{-1}\;hr^{-1}$, respectively)(P< 0.05, n = 6, ANOVA). In concert with the decrease of chlorophyll concentration, not only was the transparency enhanced from 0.48 m to 1.2m but also the suspended solids and total phosphorus decreased from $22.0{\pm}1.0\;mg/L$ to $7.5{\pm}0.5\;mg/L$ and $133{\pm}0.8\;{\mu}g/L$ to $70{\pm}0.0\;{\mu}g/L$, respectively (P<0.001, $r^2$>0.71, n = 11). Although slight decrease of SRP concentration and the increase of inorganic nitrogen ($NH_3-N$ and $NO_2-N$) were observed in the mussel addition enclosure, there was no statistical difference between two enclosures. Based on the filtering rate on phytoplankton and nutrient release rate in forms of feces and pseudofeces, Corbicula leana appeared to be the most efficient filter-feeder among three mussel species. These results inidicate that Cobicula play an important role in controlling particulate sestons and thus it could be applied as a biocontroler for the water quality management in lakes and reservoirs with algal blooms.

Quality Characteristics of Accelerated Salt-fermented Anchovy Sauce Added with Shrimp Pandalus borealis, Byproducts (새우가공부산물을 이용한 속성 멸치액젓의 품질특성)

  • Kim, Jin-Soo;Kim, Hye-Suk;Yang, Soo-Kyeong;Park, Chan-Ho;Oh, Hyeon-Seok;Kang, Kyung-Tae;Ji, Seung-Gil;Heu, Min-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.1
    • /
    • pp.87-95
    • /
    • 2006
  • Nutritional quality of accelerated salt-fermented anchovy sauce using shrimp processing byproduct as fermenting aids was characterized and compared with commercial anchovy sauce. Four types of sauces were fermented with 0 and $10\%$ addition of shrimp byproducts ($24{\pm}2^{\circ}C$, for 270 days), and 20 and $30\%$ addition of those ($24{\pm}2^{\circ}C$, for 180 days), respectively. Extractive nitrogen content (1,431 to 1,569 mg/100g) of anchovy sauces increased as additional ratios of shrimp byproduct increased. According to the results of ommission test, the taste of all anchovy sauces was influenced by the content of free amino acids, such as mainly glutamic acid and aspartic acid. Regardless of additional ratios of shrimp byproducts, all sauces were similar in total amino acid content ($9,848\~10,324$ mg/100 g), which were 2 times higher compared to that of the commercial sauce. Proline, valine and histidine contents of sauces tend to decrease as the additional ratios of shrimp byproducts increased, whereas methionine, isoleucine, leucine, phenylalanine and lysine contents increased. Increase of some amino acids and mineral content of sauces by increasing of additional ratios was due to release from shrimp byproducts. Sensory evaluation showed that scores of color, flavor and taste of the sauce added with $20\%$ shrimp byproducts_were significantly higher than those of other sauces (p<0.05). In the useful utilization aspects of seafood processing byproducts, shrimp byproducts were good resource for accelerated fermentation and nutritional improvement in preparation of fish sauce.

Concentrations and Natural 15N Abundances of NO3-N in Groundwater and Percolation Water from Intensive Vegetable Cultivation Area in Japan (일본 노지채소 집약 재배지역 토양 침출수 중의 NO3-N 농도와 질소 안정동위원소 자연존재비(δ15N))

  • Park, Kwang-Lai;Choi, Jae-Seong;Baek, Hyung-Jin;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Cho, Jin-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • Nitrate-N concentrations and the corresponding ${\delta}^{15}N$ values were determined with water samples collected periodically from artesian wells (3 and 6 m deep), underdrainage and gushout waters in a Welsh onion cultivated area in the Kushibiki Fan, Saitama Prefecture, Japan. Average $NO_3-N$ concentrations in waters from 3 and 6 m wells were 25.7 and $2.8mg\;L^{-1}$, whereas ${\delta}^{15}N$ values were 3.6 and 4.7‰, respectively. The $NO_3-N$ concentration and ${\delta}^{15}N$ value of the underdrainge water were $35.5mg\;L^{-1}$ and 6.6‰, reflecting rapid input of chemical fertilizers and farmyard manure. The mean values of $NO_3-N$ concentration and ${\delta}^{15}N$ in the gushout water flown out of the edge of Kushibiki Fan were $19.4mg\;L^{-1}$ and 7.9‰, respectively. As a results the ${\delta}^{15}N$ values of the gushout water were higher than those of the artesian wells and underdrinage water. The ${\delta}^{15}N$ values of total-N and $NO_3-N$ of the soils were 6.1 and 5.10‰, respectively, while those for nitrification-inhibitor containing fertilizer and slow-release fertilizers were -6.1 and -2.2‰, respectively.