• Title/Summary/Keyword: Nitrogen release

Search Result 342, Processing Time 0.031 seconds

Assessment of Pollution Characteristics of Surface Sediments from Lake Andong(II): Studies on the Nutrient and Heavy Metal Release Characteristics from Sediments in Andong Dam (안동댐 퇴적물의 오염도 평가(II): 안동댐 퇴적물에 대한 영양염류 및 중금속 용출 특성 연구)

  • Kim, Young Hun;Park, Jae Chung;Shin, Tae Cheon;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.391-405
    • /
    • 2020
  • Leaching chracteristics of Andong-dam sediment was conducted for heavy metal and nutrients. Five mixed sediment samples were prepared and leaching was conducted under aerobic and anaerobic condition for 60 days. Cd, Cu, Pb, Cr, Zn, Hg, As, Fe, Mn, phosphorus, and nitrogen were analyzed at each sampling time. The leaching rate of phosphorus was higher in anaerobic condition comparing with that of under aerobic condition. Some samples showed higher than the water-quality level IV. In case of As and Cd which showed highest contamination level in the sediment, leached concentration were 0.028 mg/L and 0.003 mg/L in maximum, respectively. The leached concentration is below than the lake water quality standard of Korea. Other heavy metals including Cu, Pb, and Cr also showed similar trend. Five step sequential extraction showed that easily extractable 1-2 step portion such as ion-exchangeable and adsorbed one was less than 10% and the most of the portion was residual. For As and Cd, the residual portion were 80% and 95% respectively indicating the risk by the heavy metal leaching into the lake for a short period was not high in comparing with the contamination levels.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

Characteristics and management of citrus orchard soils in Jeju (제주도(濟州道) 감귤원토양(柑橘園土壤)의 특성(特性)과 관리(管理))

  • Park, Hoon;Yoo, Sun-Ho;Hong, Soon Beum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.135-152
    • /
    • 1975
  • The following informations are known from physical and chemical characteristics of orchard soils and nutritional diagnosis of orange leaves in Jeju. 1. Most orange orchards are located on terrace and cindercone thus soil moisture and microclimate of an orchard will greatly be affected by its topography. 2. Excessive well drainage, shallow soil depth, high content of gravels, low solid phase ratio and strong wind will give severe problem of soil moisture and wind errosion, thus the exte- nsion of soil depth is necessary for maintain nutrients, water and sufficient root volume. 3. Available soil water was significantly and positively correlated with organic matter content and clay content also contributes to available soil water. Vinyl mulching was greatly helpful for soil water conservation, wind errosion prevention, soil temperature increases during winter. 4. Abundant amphoteric amorphous allophane take a key role to fix phosphorus and also rations and thus it is the major factor to determine fertilizer efficiency. Lime and phosphorus must be applied in deeper soil layer. Release of filed phosphorus must be reevluated for availability. 5. Organic matter such as see weeds will greatly increase fertilizer efficiency and low fertilizer efficiency during spring may be related to available soil water. 6. Nitrogen was in superoptimum and Mg was enough but P and Ca were somewhat deficient according to leaf analysies while K was deficient according to fruit analysis. Phosphorus application increased sugar/acid ratio and potassium decreases rind percentage. 7. Manganese deficiency and toxicity appeared in a few places. Iron and boron were enough. Most places showed tendency of copper excess but some places showed copper deficiency. 8. Soiling after elimination of rock base, application of slow release fertilizer and abundant organic matter, vinyl mulching and drip irrigation will increase fertilizer efficiency greatly and fruit yield drastically.

  • PDF

Remediation of Sediments using Micro-bubble (미세기포를 이용한 퇴적물 정화)

  • Kang, Sang Yul;Kim, Hyoung Jun;Kim, Tschung Il;Park, Hyun Ju;Na, Choon Ki;Han, Moo Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.420-427
    • /
    • 2016
  • This study was conducted on the sediment remediation using micro-bubble to remove fine particles. For this study, characteristics of contamination and release in sediment were analyzed. And then, the characteristics of bubbles on removal efficiency was investigated at various operation conditions. In particle size distribution of the sediment used for the study, the proportion of clay and silt (<0.075 mm) was about 7.7%, sand (0.075~4.75 mm) was about 67.8%, and gravel (${\geq}4.75$) was 24.5%. Total nitrogen (TN) and total phosphorus (TP) of the sediment were 2,790~3,260, 261~311 mg/kg respectively. Ignition loss and water content were 4.1~9.6, 32.9~53.2% respectively. In analysis of removal efficiency according to operation conditions of micro-bubble, it was the highest when operation condition is pressure 6 atm, pressurized water ratio 30%, and coagulant dosage 15 ppm. At the time, the sediment's removal efficiency was 19.9%. Accordingly removal efficiency of TN and TP were 21.4, 22.6% respectively. Finally a research was found that fine particles in sediment were almost removed by micro-bubble, which led to decrease nutrients' release at about 20.1~64.3% in comparison to sediment including lots of fine particles.

Improvement of Seedling Stand and Lodging Prevention in Direct Seeded Rice (벼 직파재배(直播栽培) 입묘율향상(立苗率向上)과 도복경감(倒伏輕減))

  • Oh, Yun-Jin;Kim, Chung-Kon
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.200-222
    • /
    • 1992
  • The results of recent researches for improvement of seedling stand in direct seeded rice on the dry paddy in Korea were summarized as the following ; a variety to be cultivated should be chosen the characteristics of high percentage germination under low temperature, shorter period of shoot emergence, and better growth of the mesocotyl and shoots. Meanwhile, there was 40% increase in seedling stand at the treatment of removal of the seed awn under using the drill seeder. After seeding the rice seed covered with soil of 3cm depth was better seedling emergence and also there was the hightest seedling emergence at the 70% of moisture content of the soil. In addition, the application of the Release containing GA 10% enabled to increase the seedling stand and furthermore it was effective under deep seeding depth. The optimum seeding date should be seeded around May 10 when mean air temperature is above 12-13$^{\circ}C$ so that may establish more less 70% in seedling stand. Based on an appropriate seedling stand of 150/$m^2$, the optimum seeding rate was 5kg/10a. It was the best in seeding method using drill seeder and the most desirable recommended seeding method was the drill seeder in terms of seedling stand. In order to improve seedling stand water management was more effective in canal irrigation and in drainage at 6hr after irrigation following by the seeding process. On the other hand, for the increase of seedling stand under flooded condition a variety might have characters being better germination at low concentration of dissolved oxygen and vertically deeper growing of the crown root. Also, seedling stand was able to increase with the seed coating of $CaO_2$in the flooded soil. It was possible to be seeded on the early part of May being mean air temperature of avove 10$^{\circ}C$ and the optimum seeding rate was 5kg/10a. For an effective water management water would be flooded up to 3cm depth for 2-3 weeks after seeding. The rice plant grown under the direct seeded cultivation might be not so much strong in lodging resistance compared to that grown under the transplanting and moreover direct seeded rice cultivation under flooded condition would be more weak growth of the rice plant than that on dry paddy. Meanwhile, the lodging would be affected by the seeding rate, the soil depth after seeding. and seeding method even in the same variety. In particular, roots in the lodging pattern of direct seeded rice cultivation under flooded condition were largely distributed on the soil surface so that resulted easily in the lodging. In general, the lodging resistance would be greater as seeding rate and amount of N fertilizer application are lower and soil depth after seeding is higher. Among the introduction of different seeding method the high ridged drill seeding method on dry paddy soil resulted in the lowest in the lodging index and also it was lower in the drill seeding method than in the scattering seeding method under flooded condition. In case of more than 150 seedlings per $m^2$ there was a severe lodging due to high lodging index at the 3rd and 4th internodes. The effective lodging prevention was able to at the treatment of the Inabenfide at 45 days before heading and the Uniconazol at 15 days before heading which caused the shortage by 10-15cm in culm length. Also, fertilizer management using split application of nitrogen would be contributed the reduction of lodging at the rate of 20-30-20-20-10%(basal-5th leaf stage-7th leaf stage-panicle initiation stage-heading stage) on the dry paddy soil.

  • PDF

Effect of Application Rate of a Controlled Release Fertilizer on the Changes in Medium EC and Growth of Subirrigated Vinca and Salvia (저면관수 재배에서 완효성 비료의 양이 배지의 EC 및 일일초와 살비아의 생장에 미치는 영향)

  • Kang, Jong Goo;Lee, In Ho
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Plug seedlings of vinca (Catharanthus roseus L. 'Pacifica Punch') and salvia (Salvia splendens F. Sellow ex Roem & Schult 'Maestro') were transplanted into square plastic pots (145 mL volume) filled with a soilless growing medium. To determine the effect of application rate on the growing medium EC and growth of plants, 0, 0.5, 1.0, 1.5, 2.0 and 4.0 g per pot of a controlled release fertilizer (14-14-14 Osmocote, 14N-6.2P-11.6K) were mixed with the growing medium. Plants were subirrigated daily with tap water. In both vinca and salvia, growing medium EC increased as application rate was elevated. Growing medium EC was relatively constant over a whole crop period when the application rate was less than 1.5 g per pot, while it decreased throughout the experiment at higher application rates such as 2.0 to 4.0g per pot in both species. The greatest leaf area, plant height, and shoot dry weight of vinca were obtained when plants were fertilized with 2.0 to 4.0 g per pot of the fertilizer, resulting in a growing medium EC of $1.0{\sim}1.7dS{\cdot}m^{-1}$ throughout the experiment. Leaf area, shoot dry weight, and chlorophyll content of salvia increased with elevated application rates. Leaf area, shoot dry weight, and chlorophyll content of salvia were the greatest when plants were fertilized with 4.0 g per pot, resulting in growing medium EC of $1.0{\sim}4.0dS{\cdot}m^{-1}$ throughout the experiment. Plant height of salvia was the greatest when plants were fertilized with 2.0 to 4.0g per pot. Concentrations of nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and sulfur (S) in the shoots of vinca increased, while concentration of calcium (Ca) decreased with elevated application rates. Concentrations of boron (B) and manganese (Mn) in the shoots of vinca increased as the application rate decreased.

Regional and Seasonal Variations of DIN Fluxes Across the Sediment-water Interface and the Effect of DIN Release on the Primary Production (퇴적물과 수층간의 용존무기질소 플럭스의 시공간적 변동과 1차생산에 미치는 영향)

  • KIM Do-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.456-463
    • /
    • 1996
  • The purpose of the present study is to estimate the regional and seasonal variations of dissolved inorganic nitrogen (DIN) flux across the sediment-water interface of the inner and central areas of Hiroshima Bay from August 1994 to May 1995. In addition it compares the measured methods and estimates the effect of DIN released from sediment to the primary production of Hiroshima Bay. One method used in this study is to calculate DIN flux from a concentration gradient between sediment porewaters and the overlying water, and the other method is to measure DIN flux from the sediment-core experiment. The fluxes of $NH_{4}^{+}-N\;and\;NO_{2}^{+}\;+\;NO_{3}^{-}-N$ in the inner area were higher than those in central area, all of which showed seasonal variation. $NH_{4}^{+}-N$ flux was maximum in August, while $NO_{2}^{-}\;+\;NO_{3}^{-}-N$ flux was high in January compared with the other seasons. The calculated $NH_{4}^{+}-N\;and\;NO_{2}^{-}+NO_{3}^{-}-N$ fluxes from sediments were $18.2\~60.8\;{\mu}g-at/m^2{\cdot}hr\;and\;0.24\~18.2\;{\mu}g-at/m^2{\cdot}hr$, respectively. The measured $NH_{4}^{+}-N\;and\;NO_{2}^{-}+NO_{3}^{-}-N$ fluxes across the sediment-water interface were $2.00\~111\;{\mu}g-at/m^2{\cdot}hr\;and\;-265\~82.9\;{\mu}g-at/m^2{\cdot}hr$, respectively. The former was lower than the tatter. The calculated $NH_{4}^{+}-N$ flux showed closer relation to environmental factors (dissolved of gen in the overlying water, temperature and redox condition of the sediments) than the measured one did. On the other hand, in the case of $NO_{2}^{-}+NO_{3}^{-}-N$ flux both the calculated and the measured showed little relation to environmental factors, while they turned out to have stronger relation with their concentration in sediments. DIN released from the sediment is expected to support about $25\%\~67\%$ of the primary production in Hiroshima Bay.

  • PDF

Eutrophication in the Upper Regions of Brackish Lake Sihwa with a Limited Water Exchange (물 교환이 제한적인 시화호 상류 기수역의 부영양화)

  • Choi, Kwnag-Soon;Kim, Sea-Won;Kim, Dong-Sup;Heo, Woo-Myoung;Lee, Yun-Kyoung;Hwang, In-Seo;Lee, Han-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.216-227
    • /
    • 2008
  • To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir (얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.180-192
    • /
    • 2004
  • This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.