• Title/Summary/Keyword: Nitrogen oxides (NOx)

Search Result 184, Processing Time 0.03 seconds

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.

Detailed Local Chemiluminescence Measurement (OH*, CH* and C2*) and Nitrogen Oxides Emissions in Laminar Partially Premixed CH4/Air Flames (메탄/공기 층류 부분예혼합화염의 상세 라디칼(OH*, CH* 그리고 C2*) 정보와 배기매출물에 관한 실험적 연구)

  • Jeong Yong Ki;Oh Jeong Seog;Jeon Chung Hwan;Chang Young June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.263-270
    • /
    • 2005
  • An experimental study was performed to investigate the effects of partially premixing, varying the equivalence ratios from $0.79{\sim}{\infty}$, on NOx emissions and chemiluminescence of excited $OH^{\ast},\;CH^{ast}\;C_2^{\ast}$ radicals in laminar partially premixed flames. the signal from the electronically excited state of $OH^{\ast},\;CH^{ast}\;C_2^{\ast}$ was detected through a band pass filter with a photo multiplier tube, which are processed to the intensity ratio ($C_2^{\ast}/CH^{\ast},\;C_2^{\ast}/OH^{\ast},\;and\;CH^{\ast}/OH^{\ast}$) to reveal the correlation with local equivalence ratio. And measurements of NOx emission were made to investigate the relationship between visible flame appearance, chemiluminescence, and EINOX. The results demonstrated that (1) the flames at ${\phi}<1.59$ exhibited classical double flame structure, at ${\phi}>4.76$, the flames exhibited diffusion flame structure, and the intermediate flames at $1.59<{\phi}<4.76$ was a merged flame, (2) the $OH^{\ast}$ peak was located inside the $CH^{\ast}\;and\;C_2^{\ast}$ radical for all measured conditions and the emission intensity ratio of $C_2^{\ast}/CH^{\ast}\;and\;C_2^{\ast}/OH^{\ast}$ were identified as good marker for local equivalence ratio over a range of ${\phi}=0.79{\sim}1.2\;and\;CH^{\ast}/OH^{\ast}\;is\;0.79<{\phi}<1.9$. However, it was difficult to predict the equivalence ratio in partially premixed flames using this system for ${\phi}>2.38$, (3) the minimum NOX emission index (EINOx) is obtained for a equivalence ratio of 3.19 in the intermediate flames.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

A Study on the Indoor Air Pollution Level and Its Health Significance in Working and Living Spaces (일부지역의 실내공기오염도와 건강에 미치는 영향에 관한 연구)

  • Shin, Dong-Chun;Lee, Hyo-Min;Kim, Jong-Man;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.73-84
    • /
    • 1990
  • The study was carried out to investigate the extent of indoor air pollution in living rooms of apartment houses(residential area) and offices(traffic area A : no smoking space, B : smoking space) in Seoul and to determine the health significance of indoor air pollution. Indoor and outdoor concentrations of major air pollutants were observed simultaneously from February 13 to 17, and July 24 to 28, 1988. The concentrations of carbon monoxide(CO), nitrogen oxides(NOx), sulfur dioxide($SO_2$), carbon dioxide($CO_2$) and total suspended particulate(TSP) in living room and offices were measured and the results were summarized as follows: 1. Both in summer and in winter, the indoor concentrations of CO, $CO_2$, and TSP in offices were higher than the outdoor concentrations, on the other hand, $SO_2$ was higher in the outdoors and NOx was lower than the outdoor concentration only in office A where smoking is not permitted. 2. The indoor and outdoor pollution of offices in winter was significantly higher than that in summer, and the concentrations of CO, NOx and $SO_2$ in indoor and outdoor air in living room in winter were also higher than those in summer. These results suggest that indoor levels of air pollutants are affected by smoking and winter heating systems.

  • PDF

Removal of Nitrogen Oxides Using $Cu-Mn/CeO_2-ZrO_2$ Catalyst ($Cu-Mn/CeO_2-ZrO_2$ 촉매를 이용한 질소산화물 제거 반응)

  • Jeon, Mi-Jin;Jeon, Jong-Ki;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.348-351
    • /
    • 2012
  • The effect of the addition of Cu on the catalytic activity of the $Mn/CeO_2-ZrO_2$ catalyst for the low-temperature SCR reaction of NO was investigated. Three different amounts of Cu, 5, 10, and 15 wt%, were impregnated on the $Mn/CeO_2-ZrO_2$ catalyst. The characteristics of the synthesized catalysts were examined by BET, XRD, XPS, and $H_2-TPR$ analyses. The de-NOx efficiency of the Cu-added catalysts increased with the amount of Cu. When 15 wt% Cu was impregnated, the deNOx efficiency was the highest, reaching as high as 99%. The increased deNOx efficiency is attributed to the enhanced reducing power stemming from the interaction between Mn and Cu on the catalyst surface.

A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector (Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구)

  • Oh, Jung-Mo;Cha, Won-Sim;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

Emission Prediction from Naval Ship Main Propulsive Diesel Engine under Steady Navigation (정속항해 시 함정 주 추진 디젤엔진의 배기가스 배출량 예측)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • This study was focused on the estimations of air pollutants, such as PM(Particulate matters), SOx(Sulfur Oxides), $CO_2$(Carbon diOxides) and NOx(Nitrogen Oxides), from a diesel propulsion engine installed on a naval vessel. Legislative and regulatory actions for exhaust emissions from ships are being strengthened in international communities and national governments to protect human health and the environment. In this context, various technologies have been developed from all of the nations of the world to meet strict standards. These regulations are based on commercial ship applications and according to size, but are not suitable for military naval vessels, which have much different engine operating conditions and hull architectures. Additionally, there is no international emission control system for military ships. Emission factors have been updated for commercial ship types from work at various research institutes; however, it is difficult to develop emission factors for military vessels because of their characteristics. In this paper, exhaust emissions from diesel engines installed on naval vessels under steady navigation condition were estimated with emission inventory methodology applied to ocean going vessels using fuel-based methods and fuel sulfur content analysis.

Method for Rapid Determination and Removal of Nitrogen Oxides in Flue Gas (II). Removal of Nitrogen Oxides Using Ammonia (배기가스중 질소산화물의 신속측정법과 그 제거에 관한 연구 (제 2 보). 암모니아에 의한 $NO_x$의제거)

  • Yong Keun Lee;Kee Jung Paeng;Kyu Ja Hwang
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.207-215
    • /
    • 1986
  • A new method was proposed to improve removal of nitrogen oxides $(NO_x)$ in exhaust gas by the reduction method using ammonia. At the relative humidity of 60%, 50 ppm of $NO_x$ was decomposed at the rate of 1% per hour in the reaction chamber. On the other hand, by adding $NH_3$ which was 5 times more concentrated than NOx, the decomposition rate increased to 6% per hour for 50 ppm $NO_x$ and 10% per hour for 20ppm $NO_x$. Within the actual exhausted gases, the decomposition rate of $NO_x$ reached the maximum 15% per hour because of coexisted reducing gases, such as hydrocarbon and carbon monoxide, and excess humidity containing trace metal ions. In the presence of acidic $SO_2$ gas, the decomposition rate of $NO_x$ decreased. The decomposition of $NO_x$ seems to be caused by the mist which is added to the system, and $NH_3$ in the mist which reduces $NO_x$.

  • PDF

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.