• Title/Summary/Keyword: Nitrogen level

Search Result 2,205, Processing Time 0.03 seconds

Fabrication of Level Meter for Liquid Nitrogen (액체 질소 액면계의 제작)

  • 김상보;김근홍;김종윤;이정민;김동락
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.182-184
    • /
    • 1999
  • Very simple continuous level meter with capacitive transducer for cryogenic liquid is fabricated and tested with liquid nitrogen. The principle of the level meter operation is presented.

  • PDF

Effect of Cattle Slurry on the Soil Charaters and Production of Forage Crop (액상구비 시용이 사료작물의 생산성과 토양 성분에 미치는 영향)

  • 전병태;이상무;김재영;오인환
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.1
    • /
    • pp.52-60
    • /
    • 1995
  • This experiment was carried out to determine the effect of nitrogen application level of cattle sluny(T1:150, T3:250, T53.50 kglha) and chemical fertilizer(T2:150, T4:250, T6:350 kg/ha) on the growth characteristics, dry matter yield and chemical soil property of Sorghum-Sudangrass hybrid [Sorghum bicolor L. Moench]. The results obtained are summarized as follows: Mean stem diameter was significantly increased by increasing nitrogen application level of cattle slurry and chemical fertilizer. Especially, T6 treatment was the highest as 11.1 mm, while T1 treatment w a the lowest as 0.3 mrn. According to the same level of nitrogen application, cattle slurry treaunent(T1, T3 and T5) were showed a lower mean stem hardness than chemical fertilizer treatment(T2, T4 and T6). Especially, T3 treatment was the softest at 0.7 kg/$cm^2$. The dead stubble and tiller number were increased by increasing nitrogen level of cattle slurry and chemical fertilizer(P

  • PDF

Effect of Variety and Nitrogen Fertilizer on Nitrate Content in Sorghum-Sudangrass Hybrids (품종 및 질소시비수준이 수단그라스계 교잡종간의 생육단계별 질산염 함량에 미치는 영향)

  • Yoon, C.;Choi, K.C.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • A field experiment with 200, 400 and 600kg-N/ha/year application levels was carried out to study the nitrate nitrogen accumulation of sorghum sudangrass hybrids(Xtragraze II and Civa 1990) at Iksan College Farm in 1995. The nitrate nitrogen content of Xtragraze II and Civa 1990 was increased by the application of nitrogen and decreased as the plant matured, then the nitrate nitrogen content was below the toxic level of ruminant at the level of 200kg-N application during the whole growing period. The nitrate nitrogen content of Xtragraze II and Civa 1990 exceeded the safe level of ruminant at the level of 400kg-N application, and that in Xtragraze II decreased at the low level in the later stage of growth, but that in Civa 1990 was almost kept constantly at the same level. The nitrate nitrogen accumulation of Civa 1990 had a greater tendency than that of Xtragraze II. A sum exceeding 200kg-N does not necessarily result in increase the amount of nitrate nitrogen in sorghum sudangrass hybrids. It is suggested that 400kg-N application may results in toxic level of nitrate nitrogen, and special attention must be given in feeding them.

  • PDF

Removal of High Strength Nitrogen in Dyeing Wastewater by Decomposition-Air Stripping Process (분해탈기법에 의한 염색폐수 중의 고농도 질소 제거에 관한 연구)

  • Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.213-218
    • /
    • 2002
  • Total nitrogen is a major pollutant which mostly causes eutrophication and red tide. Wastewater effluent from printing of cotton-viscose rayon containing high concentrations of total nitrogen can not be effectively treated with a typical biological treatment process. This paper provides a new treatment process and experimental results for the removal of high strength nitrogen from dyeing wastewater. The optimum conditions of air stripping for the removal of total nitrogen include around pH 12, temperature $60^{\circ}C$ with 60 minutes of stripping time. In case of a filtration-air stripping process, an initial level ($500mg/{\ell}$) of total nitrogen was significantly reduced to below $60mg/{\ell}$. Deconite was synthesised for further decomposition of organic nitrogen. Thus, a filtration-decomposition-air stripping process was possibly achieved, by which a high level ($900mg/{\ell}$) of total nitrogen was effectively removed to below $60mg/{\ell}$ P. Finally, a continuous new process for the removal of total nitrogen is proposed and confirmed, based on batch experimental results, and its process validity is further discussed throughout.

  • PDF

Effects of Inorganic Nitrogen released from Roots on the Nitrogen Metabolism (뿌리 방출물중 무기태질소가 체내성분 변이에 미치는 영향)

  • 소상섭
    • Journal of Plant Biology
    • /
    • v.22 no.1_2
    • /
    • pp.5-14
    • /
    • 1979
  • In several leguminous plants such as acasia, arrowroot and bushclover, growth rate and contents of nitrogen, phosphorus and potassium in the tissues and the variation in the culture media were determined. In water cultrue which was free of added nutrients, nitrogen was found to be largely in the form of nitrate(NO3-N). This NO3-N is believed to be the result of nitrification from NH4-N which was apparently released form the plants. From the studies of organ culture with root segments, the amount of nitrogen released and absorbed was found to be proportional to the amount added to the mediuim. Especially, in the N-plot, the amount of nitrogen absorbed by the tissue reached more than 90% of the amount supplied to the medium already in early stage. On the contrary, in the amount free plot, the amount of nitrogen released from the tissue was lower than the minimum level in the N-plot. The amount of total N and P in the cultured tissue was found to be influenced by the amount of nitrogen addedin the medium. However, the amount of K in the tissue was not related to the nitrogen level in the medium, but rather it was influenced by the amount of added potassium. These findings present little difference in the metabolic pattern among the three species plants studied, and suggest that the woody leguminous plants have some common features in tehir metabolic pattern.

  • PDF

Effect of Nitrogen Level on Yield and Quality of Gyokuro Tea (질소비료 시용량에 따른 옥로차의 수량 및 품질)

  • Park, Jang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.160-166
    • /
    • 2000
  • The reasonable level of nitrogen fertilizer of Gyokuro tea which is producted fresh leaves plucked from shade tea plants is a key factor to increase crop yield and quality. Nitrogen were applied at the level to 60, 80, 100 and $120kg\;10a^{-1}$. Analytical results of yield and quality of Gyokuro tea are summarized as follows : The soil fertility of experimental field was higher in organic matter($59.8g\;kg^{-1}$) and available phosphate($1,285mg\;kg^{-1}$), but lower in pH(4.79) compared to the common field. As the amount of nitrogen fertilizer application was increased to $80kg\;10a^{-1}$, the yield of tea leaves, the content of total nitrogen, total amino acid, caffeine and chlorophyll were increased. However, the yield of tea leaves was not increased above $100kg\;10a^{-1}$ and the increased level of nitrogen fertilizer did not show any different in the content of tannin and vitamin C. When the amount of nitrogen fertilizer application was raised, the content of thiamine and arginine increased, but the content of aspartic acid, serine and glutamic acid decreased. The content of fatty acid was produced $2.850{\sim}3.012mg\;100g^{-1}$ Especially, the content of oleic acid, linoleic acid and linolenic acid was higher at the level of $80kg\;10a^{-1}$ application than other treatments. As nitrogen was applied at $80kg\;10a^{-1}$, sensory score was 0.2~4.6 point higher than other treatments. Consequently, $80kg\;10a^{-1}$ is considered to be the best level of nitrogen fertilizer both quality and crop yield.

  • PDF

Nitrogen Use Efficiency of High Yielding Japonica Rice (Oryza Sativa L.) Influenced by Variable Nitrogen Applications

  • Kang, Shin-Gu;Hassan, Mian Sayeed;Ku, Bon-Il;Sang, Wan-Gyu;Choi, Min-Kyu;Kim, Young-Doo;Park, Hong-Kyu;Chowdhury, M. Khalequzzaman A.;Kim, Bo-Kyeong;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.213-219
    • /
    • 2013
  • A field study was conducted to understand nitrogen use efficiency of high yielding Japonica rice varieties under three levels of nitrogen fertilizer (90, 150 and 210 kg N $ha^{-1}$) in Iksan, Korea. Two high yielding rice varieties, Boramchan and Deuraechan, and an control variety, Dongjin2, were grown in fine silty paddy. Nitrogen use efficiencies (NUE) were 83.3, 56.3, and 41.2 in 90, 150, and 210 kg N $ha^{-1}$ fertilizer level, respectively. Total nitrogen uptake varied significantly among nitrogen levels and varieties. Variety Dongjin2 showed the highest nitrogen uptake efficiency (NUpE), while Boramchan and Deuraechan showed higher nitrogen utilization efficiency (NUtE). However, Nitrogen harvest index (NHI) was higher in Boramchan (0.58) than Deuraechan (0.57) and Dongjin2 (0.53). Rough rice yield showed linear relationship with total nitrogen uptake ($R^2$=0.72) within the range of nitrogen treatments. Boramchan produced significantly higher rough rice yield (8546 kg $ha^{-1}$) which mainly due to higher number of panicles per $m^2$ compared to Deuraechan (7714 kg $ha^{-1}$). Deuraechan showed higher number of spikelets per panicle, but showed lower yield due to lower number of panicle per $m^2$. Rice varieties showed different nitrogen uptake ability and NUE at different nitrogen level. Plant breeders and agronomist should take advantage of the significant variations and relationships among grain yield, NUpE, and NUE.

The Effect of Nitrogen Rates on The Growth and Yield of Maize in Agricultural Fields with the Stream (하천변 농경지에서 질소 시비량 차이가 옥수수 생육 및 수량에 미치는 영향)

  • Lim, Jung Taek;Chang, Jae-Hyuk;Rho, Ye-Jin;Ryu, Jin-Hee;Chung, Dong Young;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • This study was conducted to investigate the effect of nitrogen rates on the growth characteristics and yield of maize in agricultural fields with the stream. This indicates the necessity and optimal level of nitrous fertilization to examine the possibilities of quantity enhancement. Plant height and ear height of maize were not significantly different among the nitrogen rates. Stem diameter and leaf area index increased in the nitrogen treatment compared to untreated control. Changes of photosynthetic rate in maize leaves depending on nitrogen treatments increased as much as nitrogen rates were increased up to the highest level, 36 kg per 10a. NDF and ADF content levels of maize were investigated with different nitrogen rates regardless of treatments. In the case of NDF, it showed a tendency to decrease after 8 days of tasseling date. ADF had also decreased after 15 days of tasseling date. Nitrogen uptake of maize leaves with different nitrogen rates showed the highest level, $4.9g\;kg^{-1}$ with 36 kg per 10a on the tasseling date. Ear length and 100-kernel weight, there were no significant differences according to yield and the components with different nitrogen rates. Ear diameter and kernel number, nitrogen rates of 18 kg and 36 kg were increased compared to nitrogen rate of 9 kg per 10a and untreated control. The pericarps in 9 kg nitrogen rate and control were thicker than those of 18 kg and 36 kg treatment. The yield, 18 kg, 36 kg, and 9 kg treatments were increased by 10.96%, 9.27%, and 3.31%, compared to control. The component analysis on maize kernel with different nitrogen rates, starch showed no significant differences among treatments. Total sugar in 18 kg nitrogen treatment represented the highest content level, 6.37%. In addition, Amylopectin in 18 kg treatment showed the highest content level of 90.38%. However, amylose in 18 kg treatment showed the lowest level, 9.62% which drew a conclusion that waxy of 18 kg treatment is considered to be the strongest one. From the results described above, nitrous fertilization is essential to grow maize in agricultural fields with the stream. The optimum level of nitrous fertilization is considered 18 kg per 10a.

Effects of Nitrogen Levels and Split Application Ratio on Growth and Yield in Liriope platyphylla WANG et TANG (맥문동(麥門冬)의 질소수준(室素水準)과 분시비솔(分施比率)이 생육(生育)과 수량(收量)에 미치는 영향(影響))

  • Seong, Jae-Duck;Park, Ki-Do;Kwack, Yong-Ho;Kim, Sung-Man;Kang, Jin-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.69-73
    • /
    • 2000
  • To investigate proper method of nitrogen application, six levels of nitrogen fertilizer and five different split applications were tested in Liriope platyphylla. Leaf length and content of total nitrogen in plant increased with the increase of nitrogen application level from zero to 360kg per ha. Number and weight of tuber increased with the increase of nitrogen level and tuber production reached to highest level of 4.44M/T per ha with the level of 220kg nitrogen. And then, tuber production decreased with the addition of extra nitrogen fertilizer to level of 360kg per ha. In the research of proper nitrogen split application, tuber yield (3.52M/T per ha) was increased by 18% at the combination of 40% basal application and three times of top dressing, than that of 100% basal application.

  • PDF

The Influence of Nitrogen Application on the Activity of Rhizobium (질소시용량(窒素施用量)이 근류균활동(根瘤菌活動)에 미치는 영향(影響))

  • Yu, Jin Chang;Yoon, Suk Kwon;Lee, Yong Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.4
    • /
    • pp.221-225
    • /
    • 1974
  • The field experiment was conducted to find out the effect of inoculation of Rhizobium and interaction between amount of nitrogen and inoculating in soybean with 4 replicated split plot design. Main plot was 4 level of nitrogen 0, 2, 6, 12kg/10a and subplot was inoculation and uninoculation. The results are summarized as follows. 1. The yield of soybean did not show any significant difference among nitrogen level or between inoculating but yield of inoculated plot was a little increased than that of uninoculation. 2. At four leaves stage and flowering stage, the weight of nodules in root was decreased with incresing amount of nitrogen significantly and uninoculation caused a reduction compared with modulation significantly and those tendency was same in plant height, and those difference among treatment was more distinct in four leaves stage than in flowering stage. 3. After harvest, total nitrogen content in soil was not only increased with increasing nitrogen level but also was more increased in inoculated plot than in uninoculated plot except nitrogen 0kg/10a level. Inoculation of Rhizobium raised 15kg of nitrogen per l0a at 6kg nitrogen level compared with uninoculation.

  • PDF