• 제목/요약/키워드: Nitrogen injection

검색결과 346건 처리시간 0.021초

자동차핸들 제품의 CAE해석을 활용한 가스 사출성형에 관한연구 (Research on Gas Injection Mold using CAE Analysis of Steering wheel Parts)

  • 강세호;우창기;김옥래
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7729-7735
    • /
    • 2015
  • 플라스틱 사출성형제품은 금형을 제작하여 대량생산에 적합한 시스템으로서 두께가 두꺼운 자동차 핸들제품은 가스사출성형을 수행하는 것이 바람직하다. 가스사출성형은 용융된 원재료를 금형내로 충전시킨 후 질소가스를 주입하는 기술이다. 가스사출성형은 재료비절감, 품질향상 등 많은 장점을 가지고 있다. Moldflow소프트웨어를 활용하여 사출성형 공정을 해석하여 제품의 휨 변형을 최소하기 위한 게이트의 위치를 결정하였으며, 기존의 일반적인 PP재료로 가스사출 성형을 했을 경우 변형이 크게 발생되므로 미네랄이18% 함유된 PP 재료로 변경하여 사출제품의 휨 변형을 최소로 하는 것과 게이트의 위치를 변경하여 핑거링현상이 발생하는 트러블을 제거하는 것을 목적으로 하였다, 또한 가스 사출성형을 수행하였을 경우 원재료가 유입되고 난후 게이트를 기준으로 가스가 유입된 형상을 파악하기 위해 비교분석해 보았다. 본 연구를 통해 제품형상에 따른 두께의 변화와 가스사출성형을 수행하더라도 플라스틱의 재료에 따라 제품의 휨이 발생 될 수 있다는 것과 게이트의 위치가 제품의 트러블에 영향을 미친다는 것을 알 수 있었다.

2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석 (Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine)

  • 하준;김용래;박철웅;최영;이정우
    • 한국가스학회지
    • /
    • 제27권3호
    • /
    • pp.52-58
    • /
    • 2023
  • 지구 기상이변에 대해 탄소중립의 중요성이 대두됨에 따라 무탄소 연료인 수소의 에너지원으로서의 활용도 역시 증대되고 있다. 일반적으로 수소는 연료전지(FC, Fuel Cell)에 활용되고 있으나, 이는 연소를 기반으로 하는 내연기관(ICE, Internal Combustion Engine)에도 활용될 수 있다. 특히 연료전지만으로 수소 활용 및 인프라 확장이 어려운 때에 이미 생산 측면이나 공급 측면에서 인프라가 기 구축되어 있는 내연기관은 수소 에너지 저변 확대에 큰 도움을 줄 수 있다. 다만 수소를 연소기반으로 활용할 경우 고온에서 공기 중 질소가 산소와 반응하여 유해배기물질인 질소산화물(NOx, Nitrogen Oxides)이 생성될 수 있는 단점은 존재한다. 특히 냉간 (Cold Start) 운전 영역시 포함될 EURO-7 배기규제의 경우 워밍업(Warm-up) 과정에서 발생하는 배기배출물의 저감을 위한 노력도 필요하다. 따라서 본 연구에서는 2 L급 수소 직접분사방식 전기점화 (SI, Spark Ignition) 엔진을 활용하여 냉각수를 상온에서 88 ℃로 워밍업하는 과정에서 질소산화물 및 연료소모율의 변화 특성을 살펴보았다. 특히 수소는 기존의 가솔린, 천연가스, 액화석유가스(LPG, Liquified Petroleum Gas)와 달리 가연범위(Flammable range)가 넓기 때문에 공기과잉률(Excessive air ratio)을 희박하게 조절할 수 있다는 장점이 있다. 이에 본 연구에서는 워밍업하는 과정에 있어서 공기과잉률을 1.6/1.8/2.0으로 변화하여 그 결과를 분석하였다. 본 실험의 결과는 워밍업 시 공기과잉률이 희박해질수록 시간당 질소산화물의 배출이 적고, 열효율도 상대적으로 높으나 최종 온도까지 도달 시간이 길어짐에 따라 누적 배출량 및 연료소모율은 악화될 수도 있음을 시사한다.

디젤기관에서 CNG혼소에 의한 배출가스 저감에 관한 실험적 연구 (An Experimental Study on the Emission Reduction of Duel-Fuel Engine by CNG)

  • 한영출;엄명도;오용석;이성욱
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.213-218
    • /
    • 1997
  • CNG dual fuel engine for heavy duty diesel engine has been equipped to a Korean bus engine and tested to compare th engine performance and the emission characteristics with the existing diesel fueled engine. The results are summarized as follows. Diesel fueled engine has the fuel injection timing of BTDC17°. The injection timing of CNG modified engine is retarded to BTDC14° for reduction of NOx. Performance optimization has been carried out to have engine power equivalent to or better than the diesel fueled engine. Smoke is decreased by 85% by Korean smoke 3 mode test. By 6 mode test CO is increased by 313% and THC is increased by 1407%. NOx is decreased by 27%. Even though THC is increased very much, it's not too serious problem since CO and THC emission of diesel engine are very little compared to gasoline engine and THC don't give bad effect on human health. But the reduction technologies of CO and THC need to be considered.

  • PDF

LPG액상분사식(LPLi) 엔진에서 연료와 연료공급계통 고무류 부품사이의 반응성 연구 (Reaction Characteristics of LPG Fuel and Rubber Parts of Fuel Supply System in Liquid Phase LPG Injection (LPLi) System)

  • 김창업;박철웅;강건용
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.272-277
    • /
    • 2009
  • The liquid phase LPG injection (LPLi) system (the 3rd generation technology) has been considered as one of the most promising fuel supply systems for LPG vehicles. To investigate the reaction characteristics of LPG with rubber parts in LPLi system, various rubbers were tested. The results showed that the amount of residue from the cover rubber of a fuel pump was increased about 10 times after testing. Furthermore, the amount of sulfur and nitrogen species which are considered as main sources of deposit formation in LPLi fuel injectors were also found to be higher than those in original LPG fuel. In addition, these residues made the core parts of LPLi injector such as needle and nozzle, partially worn, which eventually causes leakage in LPLi injectors.

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

Implementation of Differential Absorption LIDAR (DIAL) for Molecular Iodine Measurements Using Injection-Seeded Laser

  • Choi, Sungchul;Baik, Sunghoon;Park, Seungkyu;Park, Nakgyu;Kim, Dukhyeon
    • Journal of the Optical Society of Korea
    • /
    • 제16권4호
    • /
    • pp.325-330
    • /
    • 2012
  • Differential absorption LIDAR (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. However, large differences in the on- and off-line laser wavelengths can cause serious errors owing to differential aerosol scattering. To resolve this problem, we have developed a new DIAL system for iodine vapor measurements in particular. The suggested DIAL system uses only one laser under seeded and unseeded conditions. To check the detection-sensitivity and error effects, we compared the results from a system using two seeded lasers with those from a system using a seeded and an unseeded laser. We demonstrate that the iodine concentration sensitivity of our system is improved in comparison to the conventional two seeded or two unseeded laser combinations.

Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation

  • Choi, Sang In;Feng, Jia Ping;Seo, Ho Suk;Jo, Young Min;Lee, Hyun Chang
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2164-2171
    • /
    • 2018
  • Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • Park, S.D.;Lee, K.S.;Kwak, J.S.;Cha, B.J.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.53-58
    • /
    • 2008
  • Film cooling effectiveness on a flat plate was measured with pressure sensitive paint. The pressure sensitive paint(PSP) changes the intensity of its emissive light with pressure and the characteristic was used in film cooling effectiveness measurement. The film coolants were air and nitrogen, and by comparing the intensity of PSP coated surface with each coolant, the film cooling effectiveness was calculated. Three blowing ratio of 0.5, 1, and 2 were tested with two mainstream turbulence intensities. Results clearly showed the effect of blowing ratio and mainstream turbulence intensity. As the blowing ratio increases, the film cooling effectiveness was decreased near the film cooling holes. However, the film cooling effectiveness far downstream from the injection hole was higher for higher blowing ratio. As the mainstream turbulence intensity increased, the film cooling effectiveness was decreased at far downstream from the injection hole.

  • PDF

Al 6061의 열간압출시 질소금형냉각이 압출재의 미세조직에 미치는 영향 (The Influence of Extrudate Microstructure of Die Cooling Using $N_2$ gas in Hot Extrusion for Al 6061 Alloy)

  • 고대훈;이상호;고대철;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.50-53
    • /
    • 2008
  • It's so difficult to obtain simultaneously both product quality and improvement of the productivity of which products are in hot aluminum extrusion process. But significant improvements in productivity and extrudate quality result from die cooling system using nitrogen gas injection during aluminum hot extrusion. These benefits are due primarily to cooling effect nitrogen gas and removal of excess heat in the extrudate temperature. This investigation is carried out hot extrusion experiment, also compared cooling system with non-cooling system to inspect cooling effects on hot aluminum extrusion. The purpose of this investigation is estimated the grain growth fur the extrudate quality, and the ram speed for the improvement of the productivity.

  • PDF