Browse > Article
http://dx.doi.org/10.1007/s11814-018-0141-6

Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation  

Choi, Sang In (Department of Applied Environmental Science, Kyung Hee University)
Feng, Jia Ping (Department of Applied Environmental Science, Kyung Hee University)
Seo, Ho Suk (EG Power Tech Co., Ltd.)
Jo, Young Min (Department of Applied Environmental Science, Kyung Hee University)
Lee, Hyun Chang (Dept. of Mechanical Design, Kangwon National University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2164-2171 More about this Journal
Abstract
Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.
Keywords
Diesel Engine; Fuel Activation Device; Cavitation; Cavitation Number; CFD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. K. Suh and C. S. Lee, Renew. Sust. Energy Rev., 58, 1601 (2016).   DOI
2 H. J. Kim, MA dissertation, Kyung Hee University, Korea (1997).
3 IARC, Diesel Engine Exhaust Carcinogenic, International Agency f Research on Cancer (2012).
4 S. I. Choi, J. P. Feng, H. S. Seo, S. B. Kim and Y. M. Jo, J. Korean Soc. Atmos. Environ., 33(4), 306 (2017).   DOI
5 Y. S. Lee, MA dissertation, Kyung Hee University, Korea (2006).
6 D. S. Park, T. J. Lee, Y. I. Lee, W. S. Jeong, S. B. Kwon, D. S. Kim and K. Y. Lee, Sci. Total Environ., 575, 97 (2017).   DOI
7 S. Ghods, Arizona State University, ProQuest Dissertations Publishing, 3567676 (2013).
8 Z. He, X. Tao, W. Zhong, X. Leng, Q. Wang and P. Zhao, Int. Communications in Heat and Mass Transfer, 65, 117 (2015).   DOI
9 B. Yin, S. Yu, H. Jia and J. Yu, Int. J. Heat Fluid Flow, 59, 1 (2016).   DOI
10 R. Payri, F. J. Salvador, J. Gimeno and O. Venegas, Exp. Therm. Fluid Sci., 44, 235 (2013).   DOI
11 C. P. Egerer, H. Stefan, J. S. Steffen and A. A. Nikolaus, Phys. Fluids, 26, 085102 (2014).   DOI
12 A. Sou, B. Bicer and A. Tomiyama, Comput. Fluids, 103, 42 (2014).   DOI
13 Z. He, C. Yuhang, L. Xianyin, W. Qian and G. Genmiao, Int. Communications in Heat and Mass Transfer, 76, 108 (2016).   DOI
14 S. Yu, B. Yin, H. Jia, S. Wen, X. Li and J. Yu, Fuel, 208, 20 (2017).   DOI
15 S. V. Apte, M. Gorokhovski and P. Moin, Int. J. Multiphase Flow, 29, 1503 (2003).   DOI
16 W. Yuan, J. Sauer and G. H. Schnerr, Mec. Ind., 2(5), 383 (2001).   DOI
17 S. K. Park, S. C. Woo, H. G. Kim and K. Y. Lee, Appl. Energy, 176, 209 (2016).   DOI
18 F. J. Salvadora, J. V. Romero, M. D. Rosello and D. Jaramillo, J. Comput. Appl. Mathematics, 291, 94 (2016).   DOI
19 B. Mohan, W. Yang and S. K. Chou, Energy Convers. Manage., 77, 269 (2014).   DOI
20 M. Ghiji, L. Goldsworthy, P. A. Brandner, V. Garaniya and P. Hield, Fuel, 175, 274 (2016).   DOI
21 A. Sou, S. Hosokawa and A. Tomiyama, Int. J. Heat and Mass Transfer, 50, 3575 (2007).   DOI
22 R. Pyszczek, L. J. Kapusta and A. Teodorczyk, J. Power Technol., 97(1), 52 (2017).
23 Z. He, Z. Shao, Q. Wang, W. Zhong and X. Tao, Exp. Therm. Fluid Sci., 60, 252 (2015).   DOI
24 A. H. Lefebvre, Taylor & Francis, New York (1989).
25 C. Baumgarten, J. Stegemann and G. P. Marker, Proc. of 18th ILASS Europe Conference, Zaragoza, Spain, 15 (2002).
26 F. Payri, R. Payri, F. J. Salvador and J. Martinez-Lopez, Comput. Fluids, 58, 88 (2012).   DOI
27 W. Bergwerk, Proc. Institute of Mechanical Engineers, 173(25), 655 (1959).   DOI
28 C. Soteriou, R. Andrews and M. Smith, SAE Paper, Paper No. 950080 (1995).
29 F. Payri, V. Bermudez, R. Payri and F. J. Salvador, Fuel, 83, 419 (2004).   DOI
30 W. H. Nurick, Trans. ASME, 98(4), 681 (1976).
31 H. Hiroyasu, M. Arai and M. Shimizu, Proceedings of International Conference on Liquid Atomization and Spray Systems, 91(ICLASS 91), 275 (1991).
32 S. Molina, F. J. Salvador, M. Carreres and D. Jaramillo, Energy Convers. Manage., 79, 114 (2014).   DOI
33 T. Qiu, X. Song, Y. Lei, X. Liu, X. An and M. Lai, Appl. Therm. Eng., 109, 364 (2016).   DOI
34 A. Zhandi, S. Sohrabi and M. Shams, Int. J. Automotive Eng., 5, 940 (2015).
35 S. Som, S. K. Aggarwal, E. M. El-Hannouny and D. E. Longman, J. Eng. Gas Turbines Power, 132(4), 042802 (2010).   DOI
36 Z. Y. Sun, G. X. Li, C. Chen, Y. S. Yu and G. X. Gao, Energy Convers. Manage., 89, 843 (2015).   DOI
37 F. Wang, Z. He, J. Liu and Q. Wang, Int. J. Automotive Technol., 16(4), 539 (2015).   DOI
38 M. Gavaises, A. Andriotis, D. Papoulias and A. Theodorakakos, Phys. Fluids, 21, 052107 (2017).
39 J. P. Feng, S. I. Choi, H. S. Seo and Y. M. Jo, Korean J. Chem. Eng. (2018), DOI:10.1007/s11814-018-0106-9.   DOI