• Title/Summary/Keyword: Nitrogen doped TiO2

Search Result 32, Processing Time 0.025 seconds

Application of Photocatalytic Decomposition of Methylene Blue on N-doped TiO2 (질소 도핑 TiO2의 Methylene Blue 광분해 제거에의 적용)

  • Baek, Mi-Hwa;Choi, Su-A;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.707-712
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ particles have been successfully prepared using titanium tetraisopropoxide as the Ti source and urea as the nitrogen source. As-prepared nitrogen-doped $TiO_2$ was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET) and ultraviolet-visible light (UV-vis) absorption spectra techniques. Photocatalytic degradation of Methylene Blue (MB) has been carried out in both solar light (UV-vis) and the visible region (${\lambda}=420nm$). Nitrogen-doped $TiO_2$ exhibits higher activity than the commercial $TiO_2$ photocalyst, particularly under visible-light irradiation because bandgap of nitrogen-doped $TiO_2$ becomes remarkably decreased.

Visible-photoresponsive Nitrogen-Doped Mesoporous TiO2 Films for Photoelectrochemical Cells

  • Bae, Jae-Young;Yun, Tae-Kwan;Ahn, Kwang-Soon;Kim, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.925-928
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ ($TiO_2$:N) nano-particles with a pure anatase crystalline structure were successfully synthesized through the hydrolysis of $TiCl_4$ in an ammonia aqueous solution. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The absorption edge of nitrogen-doped $TiO_2$ shifted into the visible wavelength region. The photoelectrochemical (PEC) performances were investigated for the $TiO_2$ mesoporous electrodes doped with different nitrogen concentrations. The $TiO_2$:N electrodes exhibited much higher PEC responses compared to the pure $TiO_2$ electrode because of the significantly enhanced visible-photoresponsibility of the $TiO_2$:N electrodes.

Synthesis and Photodecomposition of N-Doped $TiO_2$ Surface Treated by Ammonia (암모니아 표면처리 된 질소 도핑 $TiO_2$ 광촉매의 합성 및 광분해반응)

  • Kim, Yesol;Bai, Byong Chol;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.308-312
    • /
    • 2012
  • Nitrogen doped $TiO_2$ photocatalysts were prepared by ammonia for exploring the visible light photocatalytic activity. To explore the visible light photocatalytic activity of the nitrogen doped $TiO_2$ photocatalyst, the removal of methylene blue dye was investigated under the sunlight. SEM images showed that the flocculated particle sizes of N-doped $TiO_2$ decreased due to the reaction with ammonia. XRD patterns demonstrated that the samples calcined at temperatures up to $600^{\circ}C$ and doped with nitrogen using ammonia clearly showed rutile as well as anatase peaks. The XPS results showed that the nitrogen composition onto $TiO_2$ increased according to the reaction time with ammonia. Photocatalytic activity of the nitrogen doped $TiO_2$ was better than that of undoped $TiO_2$. Nitrogen doping onto the $TiO_2$ also affected the crystal type of $TiO_2$ photocatalyst.

Nitrogen Doping in Polycrystalline Anatase TiO2 Ceramics by Atmosphere Controlled Firing

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.374-386
    • /
    • 2019
  • A process for nitrogen doping of TiO2 ceramics was developed, whereby polycrystalline titania particles were prepared at 450-1000℃ with variation of the firing schedule under N2 atmosphere. The effect of nitrogen doping on the polycrystallites was investigated by X-ray diffraction (XRD) and Raman analysis. The microstructure of the TiO2 ceramics changed with variation of the firing temperature and the firing atmosphere (N2 or O2). The microstructural changes in the nitrogen-doped TiO2 ceramics were closely related to changes in the Raman spectra. Within the evaluated temperature range, the nitrogen-doped titania ceramics comprised anatase and/or rutile phases, similar to those of titania ceramics fired in air. Infiltration of nitrogen gas into the titania ceramics was analyzed by Raman spectroscopy and XRD analysis, showing a considerable change in the profiles of the N2-doped TiO2 ceramics compared with those of the TiO2 ceramics fired under O2 atmosphere. The nitrogen doping in the anatase phase may produce active sites for photocatalysis in the visible and ultraviolet regions.

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

Photocatalytic Degradation of Quinol and Blue FFS Acid Using TiO2 and Doped TiO2

  • Padmini., E.;Prakash, Singh K.;Miranda, Lima Rose
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.332-335
    • /
    • 2010
  • The photodegradation of the model compounds Quinol, an aromatic organic compound and Acid blue FFS, an acid dye of chemical class Triphenylmethane was studied by using illumination with UV lamp of light intensity 250W. $TiO_2$ and $TiO_2$ doped with Boron and Nitrogen was used as catalyst. The sol-gel method was followed with titanium isopropoxide as precursor and doping was done using Boron and Nitrogen. In photocatalytic degradation, $TiO_2$ and doped $TiO_2$ dosage, UV illumination time and initial concentration of the compounds were changed and examined in order to determine the optimal experimental conditions. Operational time was optimized for 360 min. The optimum dosage of $TiO_2$ and BN doped $TiO_2$ was obtained to be 2 $mgL^{-1}$ and 2.5 $mgL^{-1}$ respectively. Maximum degradation % for quinol and Blue FFS acid dye was 78 and 95 respectively, at the optimum dosage of BN-doped $TiO_2$ catalyst. It was 10 and 4% higher than when undoped $TiO_2$ catalyst was used.

Degradation of Humic Acid Using N-Doped TiO2 (질소를 도핑한 TiO2를 이용한 부식산 분해)

  • So, Ji-Yang;Rhee, Dong-Seock
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.119-125
    • /
    • 2011
  • N-doped Titanium oxides were prepared by using urea as a source of nitrogen. The photoactivities of the doped $TiO_2$ were evaluated on the basis of degradation of humic acid in aqueous solutions with different light sources, ultraviolet lamp, fluorescent lamp and solar light. XRD analysis was conducted to identify the crystal structure of the synthesized photocatalysts. N-doped $TiO_2$ and $pure-TiO_2$ was anatase type. SEM results showed that spherical particles were formed, which are the characteristics of the anatase form. N doped $TiO_2$ showed higher $UV_{254}$ decrease ratio and DOC removal ratio compared to $pure-TiO_2$. The humic acid degradation reaction using the UV-A lamp and UV-C lamp was assigned to pseudo-first order reaction. For solar light, only $pure-TiO_2$ and $N-TiO_2$ exhibited the pseudo-first order reaction.

  • PDF

Visible Light Induced Photocatalytic Activity of N-doped TiO2 (질소 도핑된 이산화티타늄의 가시광 광촉매 활성 연구)

  • Lee, Seo Hee;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.298-302
    • /
    • 2018
  • Photocatalytic properties of nitrogen doped titanium dioxide were investigated. Photocatalytic degradation of methylene blue under UV and visible light was carried out to characterize N-doped $TiO_2$. The result of XPS indicated that nitrogen atoms substitute for oxygen sites within the crystal structure of $TiO_2$. In the UV-Vis DRS spectra, N-doped amorphous $TiO_2$ absorbed UV light with little absorption of visible light, while the absorption of visible light of amorphous/anatase $TiO_2$ remarkably increased. Methylene blue photocatalytic degradation appeared by the irradiation of UV or visible light onto the N-doped anatase phase of $TiO_2$. However, the degradation rate of visible light was lower than that of UV light. The photocatalytic degradation rate of the amorphous/anatase $TiO_2$ sample was higher than that of the anatase $TiO_2$. These results indicate that the high surface area of amorphous/anatase $TiO_2$ sample, which was about three times larger than those of the anatase $TiO_2$ sample, may be related to small particles of N-doped anatase $TiO_2$.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • Kim, Hyeong Ju;Kim, Jae Hyeon;Lee, Cheong Hak;Hyeon, Taek Hwan;Choe, Won Yong;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.