• Title/Summary/Keyword: Nitrogen concentration

Search Result 3,449, Processing Time 0.029 seconds

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Determination of Ammonia Nitrogen by Color Saturation Measurement System (채도측정시스템을 이용한 암모니아성 질소의 정량방법)

  • Lee, Hyeong-Choon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.136-141
    • /
    • 2012
  • Objectives: The objective of this study was to investigate whether the ammonia nitrogen concentration of aqueous samples such as drinking water can be determined by measuring the saturation of the samples colored by indophenol method. Methods: A color saturation measurement system was constructed by connecting a notebook computer to an image acquisition device composed of a PC camera and a light source, and was then used to measure the saturation of samples colored by blue indophenol complex. Results: Between two available light sources, a fluorescent lamp was selected due to its demonstrating better linearity between color saturation and ammonia nitrogen concentration. Prediction by quadratic regression was more accurate than by linear regression, and prediction by quadratic regression in the concentration range of 0.1-1.0 $mg/l$ was more accurate than in the concentration range of 0.0-1.0 $mg/l$. Regression-based predictions over 0.25 $mg/l$, 0.55 $mg/l$ and 0.75 $mg/l$ concentrations were implemented both by spectrophotometric method and by measuring color saturation. In the case of 0.25 $mg/l$, the predicted concentration by spectrophotometric method was $0.256{\pm}0.0076\;mg/l$ and the predicted concentration by measuring color saturation was $0.246{\pm}0.0086\;mg/l$ (p=0.051). In the case of 0.55 $mg/l$, they were $0.561{\pm}0.0068\;mg/l$ and $0.564{\pm}0.0166\;mg/l$ (p=0.660). In the case of 0.75 $mg/l$, they were $0.755{\pm}0.0139\;mg/l$ and $0.762{\pm}0.0088\;mg/l$ (p=0.215). Conclusions: There were no statistically significant differences (p>0.05) between the data from the two methods in all three of the concentrations. Therefore, the color saturation measurement method proposed in this paper may be considered applicable for determining the ammonia nitrogen concentration of aqueous samples such as drinking water.

Estimation of influening factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater (고농도 암모니아성 질소 폐수의 효과적인 혐기성 처리를 위한 영향 인자 평가)

  • Park, Seyong;Park, Junghoon;Na, Hoysung;Kim, Moonil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.649-658
    • /
    • 2012
  • In this study, the influencing factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater removal were investigated by testing biochemical methane potential test. In the influencing factors, the trace metals which could increase activity of anaerobic microorganisms, microbial concentration and types were evaluated. In the results, trace metals supplementation showed gas production amount higher than those without addition of trace metals. Among the tested trace metals, B, Ni, and Se were preferable to gas production. In the result of gas production according to the microbial concentration, the amount of gas production was proportional to the microbial concentration. In addition, the shortest lag time and the fastest gas production rate were achieved when the highest microbial concentration was tested. granule-type microorganism produced more gas than suspended-type microorganism. In conclusion, the efficient anaerobic digestion for high strength ammonia-nitrogen wastewater removal could be achieved by applying necessary trace metals injection and high concentration granule type microorganism.

A Study on Ammonia Formation with Nitrogen Impurity at a Natural Gas Steam Reforming Catalytic Process (소량의 질소를 포함한 천연가스 수증기 개질 반응에서 GHSV 변화에 따른 암모니아 생성 반응에 관한 연구)

  • KIM, CHUL-MIN;PARK, SANG-HYOUN;LEE, JUHAN;LEE, SANGYONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.601-607
    • /
    • 2019
  • Ammonia would be formed in natural gas containing small amount of nitrogen reforming process in the process natural gas, which might damage the Pt catalyst and Prox catalyst. In the article, the effect of nitrogen contents on the formation of ammonia in the reforming process has been studied. In the experiments, Ru based and Ni based catalysts were used and the concentration of ammonia in the reformate gas at various gas hourly space velocity was measured. Experimental result shows that relatively higher ammonia concentration was measured with Ru based catalyst than with Ni based catalyst. It also shows that the concentration of ammonia increased rapidly after most of the methane converted into hydrogen. Based on the experimental results to reduce ammonia concentration it might be better to finish methane conversion at the exit position of the reforming reactor to minimize the contact time of catalyst and nitrogen with high concentration of hydrogen.

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

Behaviour of $NO_3-N$ in Soil and Groundwater Quality (토양(土壤)중 질산태질소(窒酸態窒素)의 행동(行動)과 지하수질(地下水質))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.281-297
    • /
    • 1993
  • Nitrogen is an element required to meet optimal plant growth. However, when it was applied (as chemical fertilizer or animal waste) more than the demand of plant and managed it unreasonably can be accumulated in subsoil and leached from soil system. Nitrogen also can be act as an pollutant to soil and water through water contamination if its concentration exceed the critical level. The concentration and downward movement of nitrate in soil is influenced by cultural practices and soil properties. High level of nitrate nitrogen in drinking water is harzadrous for animal and human health, especially for infants and the restoration of the quality of groundwater is impossible by now. Therefore it is the only way to prevent from leaching of nitrate nitrogen to keep the quality of groundwater as vital water resource. The aims of the presentation of this review paper are to understand the relationship between agricultural practices and the concentration of nitrate nitrogen in groundwater and to suggest further informations for the rational management methods to reduce the leaching of nitrate nitrogen in soil.

  • PDF

A Comparison of N and P Removal Characteristics by the Variation of Non-aeration Time in A2O SBBR (A2O SBBR에서 비포기 시간 배분에 따른 질소-인 제거 특성 비교)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.813-821
    • /
    • 2007
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.

Determination of Critical Nitrogen Concentration and Dilution Curve for Rice Growth

  • Lee, Byun-Woo;Cui, Ri-Xian;Kim, Min-Ho;Kim, Jun-Hwan;Nam, Hong-Shik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2002
  • Critical nitrogen concentration (Nc), which is defined as the minimum % N in shoots required to maintain the maximum growth rate of top dry weight (W) at any time, was determined for rice plant. Using two rice varietal groups, japonica varieties and an indica $\times$ japonica "Dasanbyeo", 18 data points fulfilling the statistical criteria for determining Nc were obtained through eight N-fertilization experiments over two years at Suwon (37$^{\circ}$16'N), Korea. Nc dilution curve for each variety was obtained by fitting the Nc-W relationship to power function. However, The critical nitrogen curves for the two variety groups were not different statistically. Thus, a Nc dilution curve was fitted for the Nc data points pooled over the two variety groups and proposed in rice as: Nc=4.08, where W<1.73 t h $a^{-1}$ , Nc=5.197 $W^{0.425}$3/ ($R^2$=0.964), where 1.73 t h $a^{-1}$ <W<12 t h $a^{-l}$. The Nc for W<1.73 t h $a^{-l}$ were estimated as a constant value of 4.08%, the mean value of the maximum N concentration for N-limiting condition and the minimum N concentration for N non-limiting condition. The model for Nc is applicable to diagnosing the nitrogen nutrition status during the rice growth period from emergence to heading stage. The Nc curve well discriminated the 144 data points between the N limiting and the N non-limiting groups regardless of varieties, cultural methods, and years.-limiting groups regardless of varieties, cultural methods, and years.

A Study on Nitrogen Metabolism of Lemnaceae: Assimilation of Nitrate and Ammonia in Spirodela polyrhiza and Lemna aequinoctialis (개구리밥과 식물의 질소대사에 관한 연구: 개구리밥(Spirodela polyrhiza)과 좀개구리밥(Lemna aequinoctialis)의 NO3-와 NH4-의 동화작용)

  • 장남기
    • Journal of Plant Biology
    • /
    • v.34 no.4
    • /
    • pp.253-260
    • /
    • 1991
  • Spirodela polyrhiza and Lemna aequinoctialis often occurred at the sites of high ammonium concentration and at the sites of high nitrate concentration, respectively. We investigated the different distribution between two species in relation to the type of nitrogen sources and their concentrations. Our experiments showed that L. aequinoctialis grew faster than S. polyrhiza in nitrate media with lower than 15 mM concentration. The nitrate uptake was also faster in L. aequinoctialis than in S. polyrhiza. However, neither differences in growth nor in uptake patterns between these two species were observed in ammonium media. Glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutamate synthetase (GOGAT) activities were higher in L. aequinoctialis. In particular, nitrate reductase activity (NRA) in L. aequinoctialis was 12.1 times as high as that in S. polyrhiza. These results showed that the two species responded varyingly to the types of nitrogen sources and their concentrations. Therefore, the difference in geographic distribution between the two species appeared to reflect the interspecific differences in enzyme activities and, subsequently, nitrogen absorption abilities.

  • PDF

Nitrogen-Oxygen Separation Characteristics by Polyimide Membrane System for Controlled Atmosphere Storage (CA저장을 위한 폴리이미드 막 시스템의 질소-산소 분리특성)

  • 이호원;현명택;고정삼
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 1998
  • Polyimide membrane system was designed for manufacturing nitrogen-enriched gas, and basic technical data was suggested for appling this system to controlled atmosphere storage. The permeability characteristics of pure oxygen and nitrogen could be explained by dual-mode sorption model. There was substantial decrease in the permeation rates of oxygen, which is the more permeable gas, through the polyimide membrane due to the presence of nitrogen in comparison with pure oxygen. However, the permeation rates of nitrogen was increased by the presence of oxygen. The ideal separation factor was in the range of 5 to 6 in the range of temperature and pressure difference studied, and the separation factor of air was lower than the ideal separation factor. The increase of ideal separation factor with increasing temperature is due to the fact that the activation energy for oxygen is larger than that for nitrogen. Nitrogen concentration decreased rapidly with increasing product recovery, and it was found that this is a major operating factor to obtain nitrogen concentration required for controlled atmosphere storage. A relation equation, by which nitrogen concentration in storehouse can be predicted, was suggested under the establishment of a hypothetical model for controlled atmosphere storage process using polyimide membrane system.

  • PDF