• 제목/요약/키워드: Nitrogen atmosphere

검색결과 542건 처리시간 0.022초

질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과 (Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers)

  • 홍성창;김민욱;김진호
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

탄소환원질화법에 의한 AlN 제조 규모확대 시험결과 (A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method)

  • 박형규;김성돈;남철우;김대웅;강문수;신광희
    • 자원리싸이클링
    • /
    • 제25권5호
    • /
    • pp.75-83
    • /
    • 2016
  • 탄소환원질화법을 이용하여 질화알루미늄(Aluminum Nitride: AlN)을 제조하는 연구를 배치당 0.7 ~ 1.5 kg 규모로 규모 확대하여 수행하였다. 고품위 알루미나 분말과 탄소(carbon black)를 배합하여 흑연 도가니에 장입하고, 노내 진공도 $2.0{\times}10^{-1}Torr$에서 온도($1,550{\sim}1,750^{\circ}C$), 시간(0.5 ~ 4 hr), $N_2$유량($10{\sim}40{\ell}/min$)을 변화시키면서 AlN을 합성하였다. 실험결과 합성온도 $1,700{\sim}1,750^{\circ}C$, 합성시간 3시간, 질소유량 $40{\ell}/min$가 적정 조건이었다. 또한, 합성한 AlN에 잔존하는 탄소를 제거하기 위하여 관상로에서 온도 $650-750^{\circ}C$, 1 - 2시간 범위에서 탈탄을 시킨 결과, 알루미나와 탄소 몰배합비 1 : 3.2 로 합성한 시료를 대기 분위기에서 탈탄온도 $750^{\circ}C$, 관상로의 회전속도 1.5 rpm에서 2시간 탈탄하는 것이 적정조건이었다. 시험 제조한 AlN의 성분 분석 결과 C 함량 835 ppm, O 함량 0.77%으로서 순도 99% 이상의 고품위 제품을 제조할 수 있었다.

고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 (A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas)

  • 이한민;윤재근;홍정구
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Effects of post anneal for the INZO films prepared by ultrasonic spray pyrolysis

  • Lan, Wen-How;Li, Yue-Lin;Chung, Yu-Chieh;Yu, Cheng-Chang;Chou, Yi-Chun;Wu, Yi-Da;Huang, Kai-Feng;Chen, Lung-Chien
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.179-186
    • /
    • 2014
  • Indium-nitrogen co-doped zinc oxide thin films (INZO) were prepared on glass substrates in the atmosphere by ultrasonic spray pyrolysis. The aqueous solution of zinc acetate, ammonium acetate and different indium sources: indium (III) chloride and indium (III) nitrate were used as the precursors. After film deposition, different anneal temperature treatment as 350, 450, $550^{\circ}C$ were applied. Electrical properties as concentration and mobility were characterized by Hall measurement. The surface morphology and crystalline quality were characterized by SEM and XRD. With the activation energy analysis for both films, the concentration variation of the films at different heat treatment temperature was realized. Donors correspond to zinc related states dominate the conduction mechanism for these INZO films after $550^{\circ}C$ high temperature heat treatment process.

영업용 택시 운전자들의 공기오염물질 노출평가 (Potential Exposure of Indoor Air Pollutants inside Vehicle for Professional Taxi Drivers)

  • 양원호;김대원;김영희;김종오
    • 환경위생공학
    • /
    • 제20권4호통권58호
    • /
    • pp.69-75
    • /
    • 2005
  • Professional taxi driver exposure to indoor air pollutants has been a subject of concern in recent years because of higher levels of air pollutants, comparing to the surrounding atmosphere. This study evaluated the potential exposure to respirable suspended particulate (RSP), nitrogen dioxide $(NO_2)$ and volatile organic compounds (VOCs; benzene and toluene) for professional taxi drivers inside each of 10 vehicles in Pusan, comparing weekday (Monday and Thursday) and weekend (Saturday). Indoor mean concentrations of RSP inside vehicle were $53.88\;ug/m^3\;and\;75.52\;ug/m^3$ on weekday and weekend, respectively. Measured indoor $NO_2$ concentrations were 28.32ppb and 40.69 ppb, respectively. Benzene and toluene mean concentrations inside vehicle were 5.41 ppb and 11.36 ppb, respectively. Considering no smoking of taxi drivers inside vehicle, closed window in winter, and increased usage of taxi on weekend, source of indoor air pollutants inside taxi might be mainly suggested from the number of passenger's carried, faulty exhaust systems, and engine and carburetor evaporative emissions.

백금 확산 실리콘의 깊은 에너지 준위의 농도분포에 대한 열처리효과 (Annealing Effects on Concentration Profiles of Deep Energy Levels in Platinum-diffused Silicon)

  • 권영규
    • 한국전기전자재료학회논문지
    • /
    • 제20권3호
    • /
    • pp.207-212
    • /
    • 2007
  • The concentration profiles of deep energy levels($E_c$ -0.23e V, $E_v$+0.36e V and $E_c$ -0.23e V) in platinum-diffused silicon have generally a sharp gradient in the vicinity of the surface of the silicon wafer. In this work two efficient methods are proposed to obtain the uniform concentration profiles throughout the silicon wafer. One is that the platinum diffusion is carried out at $1000^{\circ}C$ for 1h in oxygen atmosphere. In this case the values of obtained uniform concentration, $1{\times}10^{15}cm^{-3}$ for the $E_c$ -0.23e V level, and 1{\times}10^{14}cm^{-3}$ for the $E_c$ -0.52e V level, are very restricted, respectively. The other is two-step annealing process. The platinum diffusion is carried out at $850{\sim}1100^{\circ}C$ in a nitrogen ambient for 1h and then the annealing is performed at $1000^{\circ}C$ in oxygen ambient after removing platinum-source from the platinum diffused samples. The advantage of this method is that the uniform concentration of these levels required power devices can be controlled by setting the desired temperatures when the platinum diffusion is carried out in nitrogen ambient.

FORMATION OF IRON SULFIDE BY PLASMA-NITRIDING USING SUBSIDIARY CATHODE

  • Hong, Sung-Pill;Urao, Ryoichi;Takeuchi, Manabu;Kojima, Yoshitaka
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.615-620
    • /
    • 1996
  • Chromium-Molybdenum steel was plasma-nitrided at 823 K for 10.8 ks in an atmosphere of 30% $N_2$-70% $H_2$ gas under 665 Pa without and with a subsidiary cathode of $MoS_2$ to compare ion-nitriding and plasma-sulfnitriding using subsidiary cathode. When the steel was ion-nitrided without $MoS_2$, iron nitride layer of 4$\mu\textrm{m}$ and nitrogen diffusion layer of 400mm were formed on the steel. A compound layer of 15$\mu\textrm{m}$ and nitrogen diffusion layer of 400$\mu\textrm{m}$ were formed on the surface of the steel plasma-sulfnitrided with subsidiary cathode of $MoS_2$. The compound layer consisted of FeS containing Mo and iron nitrides. The nitrides of $\varepsilon$-$Fe_2$, $_3N$ and $\gamma$-$Fe_4N$ formed under the FeS. The thicker compound layer was formed by plasma-sulfnitriding than ion-nitriding. In plasma-sulfnitriding, the surface hardness was about 730 Hv. The surface hardness of the steel plasma-sulfnitrided with $MoS_2$ was lower than that of ion-nitrided without $MoS_2$. This may be due to the soft FeS layer formed on the surface of the plasma-sulfnitrided steel.

  • PDF

아크 이온플레이팅법에 의한 저온 CrN 합성 (The Low Temperature Deposition of CrN Films by the AIP Method)

  • 조용기;김상권;이원범;김성완
    • 열처리공학회지
    • /
    • 제20권2호
    • /
    • pp.78-83
    • /
    • 2007
  • CrN coatings were deposited by cathodic arc ion plating method on the SKD11 steel substrates. Atmosphere temperature of $350^{\circ}C$, arc current of 90 A, nitrogen partial pressure of 1.0-5.3 Pa, and negative bias voltage of 30-135 V were selected. The characteristics of microstructure were investigated with XRD. Hardness, adhesion and friction coefficient measured by microhardness tester, scratch tester, and ball on disk tribometer. Microstructures depended on nitrogen partial pressure and bias voltage. The preferred orientation of the films was changed from (200) to (111) with decreasing pressure and increasing bias voltage. Adhesion properties related with microstructure, but microstructure changes slightly influenced on hardness and friction properties. The critical load.($Lc_1$) and hardness of CrN films deposited at 5.3 Pa, -30 V condition were 55 N(HF1), $2157{\pm}47\;Hk_{0.025}$. The friction coefficient were about 0.5 under dry condition.

플라즈마 침질탄화처리된 순철의 화합물층 특성 (The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron)

  • 조효석;이상윤
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

Colemanite 붕산염으로부터 붕소화합물의 제조 : 무수붕산으로부터 육방정 질화붕소의 합성 (III) (Preparation of Boron Compounds from Calcium Borate, Colemanite : Synthesis of Hexagonal Boron Nitride from Boric Oxide(III))

  • 지미정;장재훈;백종후;이미재;임형미;최병현
    • 한국세라믹학회지
    • /
    • 제41권11호
    • /
    • pp.812-818
    • /
    • 2004
  • 무수붕산(B$_2$O$_3$)과 활성탄소를 사용하여 질소 분위기에서 육방정 질화붕소(h-BN)을 합성할 때 그 생성조건 및 반응과정을 검토하였다. 육방정 질화붕소의 생성조건은 140$0^{\circ}C$ 이상에서 질화붕소가 합성되기 시작하여 155$0^{\circ}C$에서는 대부분의 합성이 이루어졌고, 그 이상의 온도에서는 생성이 크지 않았음이 확인되었다. 합성된 질화붕소의 입자 형상은 미세한 판상 결정을 나타내었다. 반응 과정은 무수붕산이 탄소에 의하여 환원되어 붕소로 기화됨과 동시에 공존하는 질소 가스와 반응하여 육방정 질화붕소로 합성되는 반응 경로를 따를 것으로 사료된다.