• 제목/요약/키워드: Nitrogen atmosphere

검색결과 542건 처리시간 0.025초

Preparation of Silicon Nitride-silicon Carbide Composites from Abrasive SiC Powders

  • Kasuriya, S.;Thavorniti, P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1091-1092
    • /
    • 2006
  • Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at $1400^{\circ}C$ under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of ${\alpha}-Si_3N_4$ and ${\beta}-Si_3N_4$ as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the $Si_3N_4$ content formed in the reaction.

  • PDF

크롬질화박막형 스트레인 게이지의 열처리 특성 (The Annealing Characteristics of Chromiun Nitride Thin-Film Strain Gauges)

  • 서정환;박정도;김인규;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.692-695
    • /
    • 1999
  • This paper presents annealing characteristics of CrN thin-film strain gauges, which were deposited on glass by DC reactive magnetron sputtering in an argon-nitrogen atmosphere)Ar-(5-~25%)$N_2$. The physical and electrical characteristics of these films investigated with the thickness range 3500$\AA$ of CrN thin films, annealing temperature (100~30$0^{\circ}C$) and annealing time (24-72hr) . The optimized condition of CrN thin-film strain gauges were thickness range of 3500$\AA$ and annealing condition(30$0^{\circ}C$ , 48hr) in Ar-10%$N_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauge is obtained a high resistivity, $\rho$=1147.65$\Omega$cm a low temperature coefficient of 11.17. And change in resistance after annealing for the CrN thin film were quitely linear and stable.

  • PDF

고온 스트레인 게이지용 질화탄탈박막의 제작 (Fabrication of Tantalum Nitride Thin-Film as High-temperature Strain Gauges)

  • 김재민;최성규;남효덕;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.97-100
    • /
    • 2001
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(4∼16 %)N$_2$). These films were annealed for 1 hour in 2x10$\^$-6/ Torr vaccum furnace range 500∼1000$^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition(900$^{\circ}C$, 1 hr.) in 8% N$_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, $\rho$=768.93 ${\mu}$Ω cm, a low temperature coefficient of resistance, TCR=-84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=4.12.

  • PDF

에어백용 가스발생제의 열분해 특성 (A Thermal Decomposition Characteristics of Propellants for Safety Bag)

  • 이내우
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.97-106
    • /
    • 1996
  • Some of accidents are based on unstable chemical substances. These chemicals are easily decomposed or Ignited by heats or mechanical shocks like sodium azide. Sodium azide is commonly used as propellant for inflating automotive safety bags and the other chemical manufacturing purposes. The investigation of thermal hazard potential of sodium azide is very important because unexpected traffic accident can be occureed. The experiments were carried out by DSC, TG an ARC in air, oxygen, argon and nitrogen atmosphere. The decomposition temperatures were about $410^{\circ}C$~$420^{\circ}C$ by DSC and $330^{\circ}C$~$370^{\circ}C$ by ARC, this is very significant result for treatment of chemical. The heats of decomposition were about 81 kcal/mol in ai. and 10 kcal/mol in other atmosphere.

  • PDF

황산용액 중에서 전해철표면상에 안연-니켈 합금도금에 관한 속도론적 연구 (A Kinetic Study on the Zinc-Nickel Plating on an Elstrolytic Sulface Bathe)

  • 이응조;노재호
    • 한국표면공학회지
    • /
    • 제22권3호
    • /
    • pp.118-127
    • /
    • 1989
  • The rate of electrodeposition Zinc-nickel alloy on to electrolytic ione in sulface solution both under an inter and air atmospherss has studied by use of a rotating disc geometry. The kinetics shows 1st order reaction, and the rate constants are proportional to the square root of rpm, however, they are less than the valuse suggested by Levich. The rate constants of zinc deposition approach the total mass transfer rate constants with increasing potential and deviate with increasing rotaing speed, but those of nickel deposition are constant. Below $40^{\circ}C$ the activation engrgies of zinc deposition and nikel deposition were 4.4Kcal/mol and 6.3Kcal/mol respectively. There results show that overall reaction rate of zinc-nickel plaeting is controlled by mixed reaction and zinc deposotion is more affected by mass transfer reaction than nickel. The current density for the zinc-nickel plating was less in an air atmosphere than in a nitrogen atmosphere. The cathode efficiency increased with decreasing cathode rotating speeds, potentials, and increasing temperatures. Zzinc-nickel platings are more improved in microhardnss than zinc platings.

  • PDF

Efficient Carbonization of ABS Rubber via Iodine Doping

  • Park, Chiyoung;Kim, Chae Bin
    • Elastomers and Composites
    • /
    • 제57권1호
    • /
    • pp.9-12
    • /
    • 2022
  • Herein, a facile approach for the development of effective and low-cost carbon precursors from acrylonitrile-butadiene-styrene (ABS) rubber is reported. ABS rubber with a negligible char yield can be converted into an excellent carbon precursor with approximately 54% char yield under a nitrogen atmosphere at 800℃ by simple iodine doping and subsequent heating at 110℃ under an inert atmosphere. The enhanced char yield is attributed to the improved intermolecular interactions between the ABS chains caused by the formation of covalent bonds between the butadiene segments, along with the newly developed charge-charge interactions and other indiscriminate radical-radical couplings. The charges and radicals involved in these interactions are also generated by iodine doping. We believe that this study will be useful for the development of low-cost carbon precursors.

RF 마그네트론 스퍼터로 증착된 In2O3 박막의 질소분위기 열처리에 따른 특성변화 (Effect of Annealing in a Nitrogen Atmosphere on the Properties of In2O3 Films Deposited with RF Magnetron Sputtering)

  • 공영민;이영진;허성보;이학민;서민수;김유성;김대일
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.24-28
    • /
    • 2012
  • $In_2O_3$ films were deposited by RF magnetron sputtering on a glass substrate and then the effect of post deposition annealing in nitrogen atmosphere on the structural, optical and electrical properties of the films was investigated. After deposition, the annealing process was conducted for 30 minutes at 200 and $400^{\circ}C$. XRD pattern analysis showed that the as deposited films were amorphous. When the annealing temperature reached 200-$400^{\circ}C$, the intensities of the $In_2O_3$ (222) major peak increased and the full width at half maximum (FWHM) of the $In_2O_3$ (222) peak decreased due to the crystallization. The films annealed at $400^{\circ}C$ showed a grain size of 28 nm, which was larger than that of the as deposited amorphous films. The optical transmittance in the visible wavelength region also increased, while the electrical sheet resistance decreased. In this study, the films annealed at $400^{\circ}C$ showed the highest optical transmittance of 76% and also showed the lowest sheet resistance of $89{\Omega}/\Box$. The figure of merit reached a maximum of $7.2{\times}10^{-4}{\Omega}^{-1}$ for the films annealed at $400^{\circ}C$. The effect of the annealing on the work-function of $In_2O_3$ films was considered. The work-function obtained from annealed films at $400^{\circ}C$ was 7.0eV. Thus, the annealed $In_2O_3$ films are an alternative to ITO films for use as transparent anodes in OLEDs.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

공기와 질소 분위기에서 공침법으로 합성된 Ni1/3Co1/3Mn1/3(OH)2 분말의 특성 비교 (Characteristics of Ni1/3Co1/3Mn1/3(OH)2 Powders Prepared by Co-Precipitation in Air and Nitrogen Atmospheres)

  • 최웅희;박세련;강찬형
    • 한국분말재료학회지
    • /
    • 제23권2호
    • /
    • pp.136-142
    • /
    • 2016
  • As precursors of cathode materials for lithium ion batteries, $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$ powders are prepared in a continuously stirred tank reactor via a co-precipitation reaction between aqueous metal sulfates and NaOH in the presence of $NH_4OH$ in air or nitrogen ambient. Calcination of the precursors with $Li_2CO_3$ for 8 h at $1,000^{\circ}C$ in air produces dense spherical cathode materials. The precursors and final powders are characterized by X-ray diffraction (XRD), scanning electron microscopy, particle size analysis, tap density measurement, and thermal gravimetric analysis. The precursor powders obtained in air or nitrogen ambient show XRD patterns identified as $Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)_2$. Regardless of the atmosphere, the final powders exhibit the XRD patterns of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NCM). The precursor powders obtained in air have larger particle size and lower tap density than those obtained in nitrogen ambient. NCM powders show similar tendencies in terms of particle size and tap density. Electrochemical characterization is performed after fabricating a coin cell using NCM as the cathode and Li metal as the anode. The NCM powders from the precursors obtained in air and those from the precursors obtained in nitrogen have similar initial charge/discharge capacities and cycle life. In conclusion, the powders co-precipitated in air can be utilized as precursor materials, replacing those synthesized in the presence of nitrogen injection, which is the usual industrial practice.

A Review on the Emission Sources of Ammonia and the Factors Affecting Its Loss

  • Das, Piw;Sa, Jae-Hwan;Kim, D.S.;Kim, K.H.;Jeon, E.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제23권E2호
    • /
    • pp.47-56
    • /
    • 2007
  • Among all the nitrogen species present in the atmosphere, ammonia forms a considerable portion along with the nitrogen oxides. The major sources of atmospheric ammonia are animal feedlot operations including emission from excreta of domestic animals and agricultural activities, followed by emission from synthetic fertilizers, biomass burning and to some lesser extent, fossil fuel combustion. Ammonia emission factor, expressed as the weight of ammonia per unit weight, volume, or duration of the activity emitting it, is generally used in developing emission estimates for emission inventories. The factors determining ammonia loss from soil or from manures are the temperature, pH, humidity, precipitation and the velocity of wind above it.