• Title/Summary/Keyword: Nitrogen application

Search Result 1,843, Processing Time 0.03 seconds

Effect of Nitrogen on Cell Dynamics at Leaf Growth Zone in Two Rice Varieties

  • Sung, Jwa-Kyung;Lee, Chul-Won;Kim, Tae-Wan;Hwang, Seon-Woong;Song, Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.2
    • /
    • pp.121-125
    • /
    • 2004
  • In plants, nitrogen is the major component for growth and development. Leaf growth is based on the division, elongation and maturation of cells, which are used for making of epidermis, mesophyll, bundle sheath, xylem, phloem and so on. Dynamics of these tissues with respect to nitrogen are required for better understanding. This experiment was conducted to evaluate effect of nitrogen on the elongation of epidermal and guard cell of two rice (Oryza sativa L.) varieties, Seoanbyeo and Dasanbyeo on May 2000 at Chungbuk national university in Cheongju. After transplaning the 20-day-old seedlings into a/5000 pots, the main characteristics related with cell elongation were investigated and evaluated. A maximum. leaf length reached at 7 or 8 days after emerging from the collar, and also the leaf elongation rates were greatly affected by the increase of N application rate. The initial and final cell length were about $17\mu\textrm{m}$ and $130\mu\textrm{m}$, respectively. Cell divisions occurred within 1.0mm from leaf base. With die higher nitrogen application rate of 22 kg-N $10\textrm{a}^{-1}$, cell division per hour was greater 1.5 to 1.9 and 1.2 to 1.3 fold as compared to the N application rate of 0 and 11 kg-N $10\textrm{a}^{-1}$, respectively. Cell enlargement of epidermal and guard cell under higher N application rate (22kg-N $10\textrm{a}^{-1}$) was finished within about 20 (Seoanbyeo) and 15 hours (Dasanbyeo), while it took much time, about 30 hours.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Effects of Fertilizer on Growth, Carbon and Nitrogen Responses of Foliage in a Red Pine Stand

  • Kim, Choonsig;Ju, Nam-Gyu;Lee, Hye-Yeon;Lee, Kwang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This study was to examine growth, carbon and nitrogen responses in foliage following forest fertilization in a red pine stand. Two types of fertilizer (N:P:K=113:150:37 kg $ha^{-1}$; P:K=150:37 kg $ha^{-1}$) were applied on late April 2011. Growth, carbon and nitrogen responses of foliage were monitored 3 times (July, September, November) after fertilization. Morphological growth responses (dry mass, leaf area, specific leaf area) with foliage age were not significantly (P > 0.05) affected by fertilizer application, while needle dry mass and leaf area of July were significantly lower in current-year-old than in one-year-old or two-year-old needles of September or November. Carbon concentration and content in foliage was little affected by fertilizer application compared with sampling month or needle age, while the NPK fertilizer produced high nitrogen concentration and content of foliage. The results indicate that nitrogen concentration and content in foliage may serve as an indicator of the nitrogen status by fertilization in a red pine stand.

Effect of Nitrogen and Potassium Fertilizer Application on Yield of Rice Damaged by Drought before Panicle Initiation Stage (유수형성기전(幼穗形成期前), 한발피해(旱魃被害)를 입은 벼에 대한 N, K 시용(施用)이 수량에 미치는 영향)

  • Lee, Young-Han;Kim, Jong-Gyun;Kim, In-Hwan;Lee, Han-Saeng;Cho, Jae-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.15-19
    • /
    • 1996
  • A field experiment was conducted to understand effect of nitrogen and potassium fertilizer application on paddy where drought damaged rice plant before panicle stage in 1994. The field located on a terraced position with silt loam texture. The application rates of nitrogen were 30 and 60 kg/ha, and those of potassium were 20 and 40 kg/ha. Rice yield from normally irrigated plot was 5.02 ton/ha, while control plot depended on rainfed was 1.67 ton/ha. The yield from control plot irrigated at panicle stage was 86% of normally irrigated plot. Nitrogen application with irrigation at panicle stage increased yield, significantly, while potassium application showed little effect.

  • PDF

Effect of Nitrogen Fertilization on Quality Characteristics of Rice Grain and Aroma-active Compounds of Cooked Rice (질소시비가 발의 품질 특성과 취반미의 향기 성분에 미치는 영향)

  • Je-Cheon Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.527-533
    • /
    • 2003
  • This experiment was conducted in 2001 to investigate the effect of four nitrogen levels (0, 5.5, 11, 16.5kg/10a) on the yield and quality of vice especially with respect to eating quality. One early-maturing variety (Daejinbyeo) and two mid-late-maturing varieties (Ilpumbyeo and Chucheongbyeo) were used in this experiment. Rice yields of all varieties were increased by the higher rate of nitrogen application, mainly due to a larger number of panicles per m2. Head rice ratio was reduced significantly with an increased rate of nitrogen, while immature vice ratio was increased significantly. Increasing the nitrogen application rate, a considerable increase of protein content was found in all tested rice varieties. Palatability value of Daejinbyeo and Ilpumbyeo measured by rice taster was not affected by nitrogen application rate ranging from 0 to 11 kg/10a, but it was decreased significantly at the rate of 16.5kg/10a. In contrast, the palatability value of Chucheongbyeo was decreased significantly by increasing nitrogen application at the whole application rate. A positive correlation was found between nitrogen application rate and protein content (r=$0.88^{**}\textrm{-}0.96^{**}$), but head rice (r=$-0.84^{**}$~$-0.91^{**}$) and palatability value (r=$-0.72^{**}$~$-0.85^{**}$) showed a negative correlation with the nitrogen application rate. Regardless of the fact that eleven aroma-active volatile compounds were detected in cooked vice of Chucheongbyeo, it was concluded that the aroma-active volatile compounds of cooked rice was not affected by the different nitrogen application rate. The results of this study showed that the standard nitrogen fertilization rate of 11kg/10a could be appropriate considering both rice yield and palatability.

Effect of Water Management after Fertilizer Application on Fate and Efficiency of Applied Nitrogen (시식 후 물관리 방법이 실소의 동태 및 이용효율에 미치는 영향)

  • 이변우;명을재;최관호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.157-166
    • /
    • 1995
  • The fate and use efficiency of applied nitrogen were evaluated in a pot experiment with different fertilizers and water management practices during 30days after fertilizer application. N-P-K compound fertilizers, 13-10-1l(F-l) for upland Crop use and 15-10-10(F-3) for rice Crop use, and mixed fertilizer, 21-17-17(F-2) for basal dressing in rice were used. Fertilizers corresponding to 1.8g N were mixed thoroughly with the whole volume of sandy loam soil in a pot. The pots were flooded upto 3cm above soil surface for O(0dF), 10(10dF), 20(20dF), and 30(30dF) days after fertilizer application and all the treatments were flooded continuously from 30 days after fertilizer application. During the flooding period water percolation rate was adjusted to 2.5mm/day. Rice seedlings were transplanted 40 days after fertilizer application. The pH of infiltrated water increased with increasing duration of flooding. The pH of F-2 was higher than those of F-1 and F-3 between which there were no differences. The applied nitrogen remained 23% in F-1, 29% in F-2, and 29.1 % in F-3, and 45.0% in 0dF, 26.6% in 10dF, 24.8% in 20dF, and 20.3% in 30dF as inorganic nitrogen at 63 days after fertilizer application. Nitrogen losses by leaching amounted to 51.3%, 32.1% and 48.1% of applied nitrogen in F-1, F-2 and F-3, respectively. Nitrogen leaching losses increased with increasing duration of flood- ing, amounting to 25.7%, 29.8%, 32.7%, and 35.8% in 0dF, 10dF, 20dF and 30dF, respectively. Gaseous loss of applied nitrogen was greatest in F-2, followed by F-1 and F-3. Total loss of nitrogen due to gaseous volatilization and leaching was greatest in F -1, followed by F -2 and F-3, and were greater in the treatments with longer flooding after fertilizer application. Nitrogen recovery by rice shoot until 72 days after transplanting were 23.2%, 24.7% and 27.4% of applied nitrogen in F-1, F-2 and F-3, respectively and 34.1%, 25.5%, 21.1%, and 21.2% in 0dF, 10dF, 20dF and 30dF, respectively.

  • PDF

Effects of Application Times and Dilution of Cattle Slurry on Orchardgrass (Dactyljs glomerata L.) (가축분뇨의 시용시기와 희석이 목초의 건물생산에 미치는 영향)

  • Cho, Ik-Hwan;Lee, Ju-Sam;Ahn, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.2
    • /
    • pp.209-217
    • /
    • 2004
  • The aim of this experiment was to investigate the effects of applying times and dilution rates of cattle slurry on dry matter yields of orchard grass. Cattle slurry was applied at the rates of average mineral nitrogen fertilizer equivalent to 150 kg/ha/year in 3 cutting frequency. Significantly higher dry matter yields than that of no fertilization (3.04 ton DM/ha) were recorded in the application of diluted cattle slurry(5.38~6.25 ton DM/ha) (p<0.05). Especially, this tendency was shown with higher annual dry matter yields at the partitioned dressing times, such as at the applications for 1st and 2nd growth, 1st and 3rd growth, and 1st, 2nd and 3rd growth respectively. The yields of annual dry matter both at fertilizing phosphorus and potassium, and phosphorus, potassium and nitrogen were higher than no fertilization as 5.41 tons and 8.78 tons per ha respectively. However, with application of diluted cattle slurry, dry matter yield par year (5.84 ton DM/ha) was higher than those of fertilizing phosphorus and potassium. The efficiencies of dry matter production with mineral and cattle slurry nitrogen application (kg DM/kg N) were 225 and 15.8~18.7 kg DM/kg N respectively. Especially, these tendencies were higher in diluted application plots than in no-diluted application plots of cattle slurry.

  • PDF

Effects of Chemical Additives on Nitrogen Contents in Dairy Slurry (젖소 액상분뇨에 화학제재를 첨가 시 질소 함량에 미치는 영향)

  • Choi, In-Hak;Kim, Chang-Mann
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.811-817
    • /
    • 2009
  • To determine changes in nitrogen contents and optimal rates as N fertilizer, we investigated nitrogen characteristics in the slurry in the respond to the application of 0, 0.5, and 1 g of ferrous sulfate or alum /25g of dairy slurry. Additions of ferrous sulfate or alum increase total nitrogen, inorganic nitrogen, available nitrogen, and predicted available nitrogen contents in dairy slurry, resulting in reduction in pH. The best results were found in the treatment with 0.5 g of ferrous sulfate or alum /25 g of dairy slurry. In conclusion, the use of ferrous sulfate or alum as on-farm amendment to dairy slurry should be represented an alternative to improve N in dairy slurry.

Nitrogen Harvest Index in Some Varieties of Mulberry, Morus spp.

  • Kumar, Jalaja S.;Chakraborty, Chumki;Sarkar, A.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.131-134
    • /
    • 2002
  • Mulberry being the only food of silkworm, Bombyx mori L., is of great economic importance to the silk industry, The success in cocoon production mainly depends on the supply of quality leaves in sufficient quantity. In mulberry, where the economic product is leaf, the uptake of nitrogen from soil is very heavy and high responses to application of nutrients have been reported. Nitrogen supports vegetative growth particularly the leaf biomass. Variation in nitrogen harvest index and other physiological and yield contributing traits were estimated in five mulberry genotypes. Considerable variation was observed for nitrogen harvest index, protein yield per plant and harvest index. The correlation studies indicated the protein yield per plant was significantly correlated with leaf yield, nitrogen content in leaf, nitrogen harvest index and harvest index. The broad sense heritability estimates revealed that harvest index showed highest heritability (88.07%) followed by nitrogen content (82.52%), protein yield (70.28%) and nitrogen harvest index (66.52%).

Effect of the Drill Widths and Nitrogen Application Levels in Early Spring on Seed Productivity of Domestic Tall Fescue (Festuca arundinacea Schreb) (휴폭 및 이른 봄 질소시비량에 따른 국내육성 톨 페스큐의 종자생산성)

  • Lee, Sang-Hoon;Kim, Ki-Yong;Ji, Hee Chung;Hwang, Tae Young;Park, Hyung Soo;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • In this study, we sought to evaluate the growth characteristics and seed productivities of domestic tall fescue that were cultivated with differing combinations of drill widths and nitrogen-application rates in early spring; the examination was conducted at the National Institute of Animal Science, RDA, from 2013 to 2014. The main plots were three widths of 15 cm, 30 cm, and 45 cm, and the subplots were subject to nitrogen-application rates in early spring of 45 kg/ha, 90 kg/ha, 135 kg/ha, and 180 kg/ha. The growth and development characteristics did not vary by treatment in terms of drill width and early-spring nitrogen application. Tall fescue Purumi showed a stable seed productivity of two tons or greater when the drill width was set at 15 cm and 90 kg/ha of nitrogen was applied in early spring. The narrower the drill width, the greater the numbers of both the ears and seeds, while the length of the ear was longer when the drill width was wider. Regarding the influence of the drill width and early-spring nitrogen application on the productivity of seed-producing straw, the dry matter productivity was higher when the drill width was narrower; however, no particular trend was observed with respect to different amounts of fertilizer. The average production amount of the first round of straw after seed gathering was 6,920 kg/ha. The second round produced an average 8,134 kg/ha of dry matter.