• Title/Summary/Keyword: Nitrogen and phosphorus

Search Result 1,859, Processing Time 0.039 seconds

Effects of Inoculation of Rhizobium and Arbuscular Mycorrhiza, Poultry litter, Nitrogen, and Phosphorus on Growth and Yield in Chickpea

  • Solaiman A. R. M.;Rabbani M. G.;Molla M. N.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.4
    • /
    • pp.256-261
    • /
    • 2005
  • The experiment was conducted at the Ban­gabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur to study the response of chickpea (Cicer arietinum L) to dual inoculation of Rhizobium and arbuscular mycorrhiza, poultry litter, nitrogen, and phosphorus on spore population and colonization, nodulation, growth, yield attributes, and yield. The performance of Rhizobium inoculant alone was superior to control in all the parameters of the crop studied. Among the treatments dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter performed best in recording number and dry weight of nodules, dry weight of shoots and roots, number of pods/plant, number of seeds/pod, and seed yields of chickpea. The highest seed yield of 3.96g/plant was obtained by inoculating chickpea plants with dual inoculation of Rhizobium and arbuscular mycorrhiza in association with poultry litter. Treatments receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of nitrogen and phosphorus, Rhizobium inoculant in presence of nitrogen and phosphorus, and that of arbuscular mycorrhiza in presence of nitrogen and phosphorus were similar as that of treatment receiving dual inoculation of Rhizobium and arbuscular mycorrhiza in presence of poultry litter. From the view point of nodulation, growth, yield attributes, and yields of chickpea, dual inoculation of Rhizobium inoculant and arbuscular mycorrhiza along with poultry litter was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of chickpea in Shallow Red Brown Terrace Soil of Bangladesh.

Effects of Fermented Leachate of Food Waste (FLFW) and Temperature on Nutrient Removal in Sequencing Batch Reactor

  • Roh, Sung-Hee;Chun, Young-Nam;Lee, Sook-Young;Cheong, Hyeon-Sook;Lee, Jae-Wook;Kim, Sun-Il
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.155-161
    • /
    • 2008
  • This study examined effects of the fermented leachate of food waste (FLFW) on nitrogen and phosphorous removal for domestic wastewater containing a low carbon-to-nitrogen (C/N) ratio in sequencing batch reactor (SBR). When the FLFW was not supplied in the process, release of phosphorus and excessive intake was not observed at both anaerobic and aerobic stages. On the other hand, when the FLFW was gradually added, active release of phosphorus and intake of phosphorus was noticed at an anaerobic stage and aerobic stage, respectively, resulting in improved phosphorus removal efficiency. The removal efficiency of nitrogen and phosphorus was increased from 75% and 37% (R-1, control test) to 97% and 80% (R-4, the highest substrate ratio test), respectively. In addition, although activity of the nitrogen oxidizing microorganisms was reduced when the reaction temperature was decreased to $10^{\circ}C$, the phosphorus removal efficiency was shown to increase with the addition of FLFW, indicating an independence from temperature. Overall, this study suggests that an efficient nutrients removal process can be successfully employed into a SBR when the FLFW is added to a wastewater which has a low C/N ratio.

Removal Effect of Nitrogen and Phosphorus of Acorus cazamus var. angustatus oil Its Growth Stage and Water-storage Time (생장단계와 체류시간에 따른 창포의 질소와 인 제거효과)

  • Seo Byung-Soo;Park Chong-Min
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • The removal affect of nitrogen and phosphorus were analyzed using a Acorus calamus var. angustatus. The nutrient concentration, growth stage of plants and the storage time of polluted water were considered. The results of this study were as follows: after an hour the content of nitrogen and phosphorus were considerably reduced in the Acorus calamus var. angustatus, while after two-four hours the rate of reduction was extremely low. This situation was the same in the early growth stage, growing stage and highest growth stage of the plant. The removal rate of nitrogen and phosphorus with the Acorus calamus var. angustatus was higher, when these two minerals remained in high levels of water. The Acorus calamus var. angustatus was more effective to remove nitrogen than that of phosphorus. The plant removed the most nitrogen and phosphorus when in the highest growth stage, but this was not clear in the growth stages. The removal rate was higher, in the case of moving polluted water to other plants after two days, than in the case of four days of growth in the same plants.

The Study on Nitrogen and Phosphorus Removal Using Photosynthetic Bacteria in SBR Process (광합성 미생물을 이용한 SBR공법에서의 질소, 인 동시제거에 관한 연구)

  • Kim Yung-Ho;Kim Sung-Chul;Lee Kwang-Hyun;Joo Hyun-Jong
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.12-20
    • /
    • 2005
  • Most of sewage treatment plants in Korea is operated for the removal of organic material. Because of low C/N ratio of domestic wastewater it is very difficult to remove nitrogen and phosphorus from wastewater. Therefore C/N ratio is key factor for the removed of nitrogen and phosphorus. PSB(photosynthetic bacteria) can remove the nutrient materials, so this study is focused on PSB characterization of nutrient removal. PSB is possible to remove nitrogen, phosphorus in anaerobic and aerobic condition. This study try to find out condition of the PSB in SBR reactor, Batch reactor. It consists of three Mode. Mode 1, 2 is to apply activated sludge process and Mode 3 is that seeded PSB in the activated sludge process. As a result of SBR process, Mode 1, 2 which was activated sludge Process showed $79\~90\%,\;66\~90\%$ of SCODcr, $94.67\~95.89\%,\;95.76\~98.56\%$ of TKN, and Mode 3 has $84\~92\%$ of SCODcr, $95.39\~99.52\%$ of TKN removal efficiency, respectively. When comparison with Mode 1, 2 and 3, most of nitrogen and phosphorus is removed at the anaerobic condition in Mode 3. but Mode 1, 2 has just revealed activated sludge process characterization. It would because of characterization of PSB.

Evaluation of Physical Property on EM Media for Water Treatment (수처리용 EM 담체의 물리적 특성 평가)

  • Bae, Su-Hyun;Ra, Deog-Gwan
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.493-502
    • /
    • 2018
  • The purpose of this study was to develop EM media for water treatment and to remove nitrogen and phosphorus which cause water algae boom in water system. The ideal mixing ratio of raw material such as clay: zeolite: vermiculite: activated carbon for manufacturing the EM media was 10: 2.5: 0.1: 2, and the calcination temperature was $700^{\circ}C$. The comparison of the physical properties of manufactures using distilled water and EM activated liquid as the material mixture are as follows. Porosity and density of EM media were 39.98 % and $1.13kg/m^3$, adsorption efficiencies of nitrogen and phosphorus were 69.3 % and 38.9 %. In contrast, porosity and density of distilled water media were 37.80 % and $1.11kg/m^3$, and adsorption efficiencies of nitrogen and phosphorus were 62.5 % and 37.8 %. The adsorption rate of nitrogen and phosphorus in the EM media was higher than that of the distilled water made one by 6.8 % and 1.1 %, respectively. The adsorption characteristics of the media to nitrogen and phosphorus could be expressed by the Freudlich adsorption isotherm. The change of calcination time did not affect the adsorption efficiency of phosphorus and nitrogen when EM media was formed, but it was considered that it affects the strength of media. Nitrogen removal efficiency was the best record in 4 hours of calcination time and 3 hours of calcination time in phosphorus removal efficiency.

A Study on the Removal of Nitrogen and Phosphorus by Operation Mode for Livestock Wastewater Treatment Post-process Using SBR (축산폐수의 후처리공정으로서 SBR 적용시 운전인자에 따른 질소와 인의 제거특성에 관한 연구)

  • Choi, Gun-Youl;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.214-219
    • /
    • 2009
  • This study examined the removal efficiency of the nitrogen and phosphorus in order to compensate for the combined process of ATAD(Autothermal Thermophilic Aaerobic Digestion) and EGSB(Expended Granular Sludge Bed), which are treatment methods for livestock wastewater, by introducing SBR(Sequencing Batch Reactor) as post-treatment process. The analysis on the treatment efficiency of each operation mode showed that, in the case of T-N, the treatment efficiency were 67.1% and 74.2% for Run-1 and Run-2, respectively, and in the case of T-P, the values were 71.2 and 74.1, respectively, which are indicating that the treatment efficacy is higher in the condition of Run-1, in which the time period of Anoxic and Aerobic segments were increased. In addition, the result of analyzing removal characteristics of nitrogen and phosphorus by Influx load showed that removal efficiency of nitrogen was better in the case of high influx load than in the case of low influx load. Regardless of Influx load, phosphorus showed constant influx concentration, so that removal efficiency of phosphorus was influenced littler by Influx load than that of nitrogen. This study also fed methanol as an external carbon source and performed experiment to induce denitrification under anoxic condition by using nitrate among nitrogen compounds of SBR reactor, and the results showed that intermittent feeding was more effective in Nitrogen Removal than composite feeding.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

Characteristics of Nitrogen and Phosphorus Removal According to the Variation of Operating Cycles in (AO)2 SBBR ((AO)2 SBBR에서 운전주기에 따른 질소와 인 제거 특성 비교)

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • This study was carried out to investigate the variation of organic, nitrogen and phosphorus in $(AO)_2$ SBBR process according to the variation of operating cycle at the high TOC concentration. The operation time in anoxic (anaerobic) time to oxic time was 1:1. Three lab-scale SBBRS were fed with synthetic wastewater based on glucose as carbon source, The variation of total TOC removal was similar each other irrespective of operation time, however, the TOC concentrations in SBBRs showed a little difference according to the operating condition. In SBBR, complete nitrification was not occurred at all reactors, however, R3 showed a higher nitrification than R2. And in SBBR, the variation of operating time more affected at phosphorus removal than nitrogen removal. R2 which had the shortest time at the 1st aeration time showed the lowest phosphorus release and uptake efficacy.

Growth Response and Uptake of Nitrogen and Phosphorus of Pinus thunbergii by Treatment of a Dried Swine Excrement (고형돈분 처리 시 해송 묘목의 생장반응 및 질소·인 흡수 효과)

  • Lee, Chang-Heon;Cho, Jae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.2
    • /
    • pp.72-80
    • /
    • 2006
  • This study was conducted to evaluate the influence of dried swine excrement on the germination of Pinus thunbergii seeds, the growth response of seedlings of Pinus thunbergii and the uptaken of nitrogen and phosphorous by seedlings of Pinus thunbergii. The germination rate of seeds of Pinus thunbergii tends to decrease according to the increasing of application amount of dried swine excrement and the application amounts of dried swine excrement which is more than 3%(w/w %) makes the rate of germination to much more decreased. Contents of nitrogen and phosphorus are much higher in a way that the dried swine excrement was treated in nursery soil. 179 days after seeds of Pinus thunbergii were sowed, nitrogen contents in soil was decreased more than 70% and phosphorus was decreased 20 to 45%. Growth response of Pinus thunbergii was much higher in treatment of dried swine excrement than in control. But growth response was not affected by increasing of application amounts of dried swine excrement. Growth response of Pinus thunbergii was the highest in 2%(w/w %) application but its growth response was decreased in treatment more than 3% (w/w %) of dried swine excrement.

Operation and Modeling of Bench-Scale SBR for Simultaneous Removal of Nitrogen and Phosphorus Using Real Wastewater

  • Lim, Seong-Jin;Moon, Ra-Kyung;Lee, Woo-Gi;Sunhoon Kwon;Park, Byung-Geon;Chang, Ho-Nam
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.441-448
    • /
    • 2000
  • Experimental work was carried out on nitrogen and phosphorus removal from real wastewater using a bench-scale SBR process. The phosphorus removal was stable and the phosphorus concentration remaining in the reactor was maintained within 1.5ppm, regardless of the addition of an external carbon source. In the case of nitrogen, an external carbon source was necessary for denitrification. The effect on denitrification with the addition of various carbon sources, such as glucose, methanol, acetate, and propionate, was also investigated. Acetate was found to be the most effective among those tested in this study. When 100ppm (theoretical oxygen demand) of sodium acetate was added, the average rate of denitrifiaction was 2.73mg NO$_3$-N (g MLSS)(sup)-1 h(sup)-1, which was ca. 4 times higher than that with the addition of 200 ppm of methanol. The phosphorus and nitrogen concentrations were both maintained within 1.5ppm by the addition of an appropriate amount of a carbon source during a long-term operation of the SBR. The mathematical modeling was performed using Monod kinetics, other microbial kinetics, mass balances, and stoichiometry. The modeling was found to be useful for predicting the SBR operation and optimizing the HRT.

  • PDF