• Title/Summary/Keyword: Nitrogen and carbon contents

Search Result 235, Processing Time 0.028 seconds

Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth I. Effects of temperature on growth, total content of nitrogen and non-structureal carbohydrate in forage rape(Brassica napus L.) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 I. 저온처리가 유채 ( Brassica napus L. ) 의 생육 , 질소 및 비구조성 탄수화물의 총 함량에 미치는 영향)

  • 김병호;김태환;김기원;정우진;전해열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.3
    • /
    • pp.157-163
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Dry matter, nitrogen and non-structural carbohydrate content of plants grown under $5^{\circ}C$ or $20^{\circ}C$ of culture temperature during 25 days were investigated. The dry matter content of leaves and roots were significantly reduced under $5^{\circ}C$ compared with $20^{\circ}C$culture condition. Comparing with the dry matter per plant under $20^{\circ}C$, those in leaves and roots under $5^{\circ}C$ decreased to 25% and 10%, respectively, after 25 days of temperature treatment. Total nitrogen content in leaves under $20^{\circ}C$ and $5^{\circ}C$ increased to 68% and 39% compared to the initial lenel(day O), respectively, during 25 days after temperature treatment, Nitrogen content in roots highly increased under 5 C while there was a little change under $20^{\circ}C$ condition. The nitrogen contents in roots under $5^{\circ}C$ and $20^{\circ}C$ were 39.0 and 30.8mgJg DM, respectively, after 25 days of temperature treatment. Total contents of soluble carbohydrate in both leaves and roots under $5^{\circ}C$ were higher than those under $20^{\circ}C$ condition. After 25 days of temperature treatment under$5^{\circ}C$ , their contents in leaves and roots were 1.4 and 2.0 times higher than those of under $20^{\circ}C$ condition. Stach atent in roots under $20^{\circ}C$ was less changed, while thatof under $5^{\circ}C$ greatly increased from 64.8 to 178.7mglg DM duling 25 days. 'Ihese results clearly showed that an accumulation of both nitrogen and non-structural carbohydrate in the plants occured under low temperature condition.e condition.

  • PDF

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

A Study of Treatment of Cattle Manure and Food Waste by Vermicomposting (Vermicomposting에 의한 우분과 음식물쓰레기의 처리에 관한 연구)

  • Jo, Ik-Hwan;Lee, Ju-Sam
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.4
    • /
    • pp.93-102
    • /
    • 2003
  • This research was made to determine the optimum mixing ratio cattle manure and food waste investigating the effect that gets the growth and reproductive efficiency of earthworm and productivity of earthworm casts at processing process when handled cattle manure and food waste by vermicomposting, in order to establish the treatment system of organic wastes by vermicomposting. Survival ratio of earthworm was highest in the mixing ratio 80~100% : 20~0% of cattle manure and food Waste, and the increasing ratio was highest in cattle manure 100%, and the number of young worms, the weight of young worms and the productivity of earthworm casts in plots more than the mixing ratio 60% of cattle manure were significantly higher than in the other treatment plots(p<0.05). Total nitrogen and carbon contents in earthworm cast were decreased when rearing time of earthworm was increased. Carbon and nitrogen rate(C/N) of earthworm cast in plots more than the mixing ratio 80% of cattle manure was significantly higher than in the other treatment plots(p<0.05). pH in earthworm cast was higher than that in residual matter. The contents of electrolytic conductivity in the higher mixing ratio of food waste were significantly higher than those in the other treatment plots(p<0.05).

  • PDF

Effect of Carbonized Rice Hull Application on Increasing Soil Carbon Storage and Mitigating Greenhouse Gas Emissions during Chinese Cabbage Cultivation

  • Park, Woo-Kyun;Kim, Gun-Yeob;Lee, Sun-Il;Shin, Joung-Du;Jang, Hee-Young;Na, Un-Sung;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.181-193
    • /
    • 2016
  • This experiment was conducted to evaluate the effect of carbonized rice hull (CRH) application on soil carbon storage and $N_2O$ emissions from upland soil. It was used at different rates of 0, 5, 10 and $20Mg\;ha^{-1}$. During the Chinese cabbage cultivation, several soil chemical characteristics such as soil moisture, temperature and soil carbon were observed. Also, $CO_2$ and $N_2O$ emissions were monitored. Soil organic matter contents slightly increased with carbonized rice hull applied in all the treatments. The soil carbon contents with application rate of 0, 5, 10 and $20Mg\;ha^{-1}$ were 0, 1.3, 1.2 and $2.6g\;kg^{-1}$, respectively. It was observed that soil carbon content was higher with increasing CRH application rate. Total nitrogen contents of soil applied with CRH relatively decreased with the course of time. However, $NO_3$-N contents in the soil with CRH application rate of 5, 10 and $20Mg\;ha^{-1}$ were 28.6, 25.7 and $21.5mg\;kg^{-1}$ at the end of experiment, respectively. $CO_2$ emission at the $5Mg\;ha^{-1}$ application of CRH was higher about 18.9% than non-treatment, whereas those of $10Mg\;ha^{-1}$ and $20Mg\;ha^{-1}$ treatment were lower 14.4% and 11.8% compared to non-treatment, respectively. Also, it was shown that $N_2O$ emission reduced by 19.9, 28.3 and 54.0% when CRH was applied at 5, 10 and $5Mg\;ha^{-1}$, respectively.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Effects of Nitrogen and Precipitates on the Mechanical Properties of 26Cr-2Mo Superferritic Stainless Steel Welds (26Cr-2Mo 수퍼 페라이트계 스테인리스강의 용접부 기계적 성질에 미치는 질소 및 석출물의 영향)

  • 황의순;이하미;김성욱;서영대;이창희;안상곤;이용득
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.63-71
    • /
    • 2002
  • One of the shortcoming of ferritic stainless steels is their limited toughness. The most important factor governing the toughness of ferritic stainless steels is hewn to be their interstitial contents. Due to the limited solubility of carbon and nitrogen in the ferrite matrix, it is difficult to avoid carbide and nitride precipitates. In the study, the role of nitrogen on the toughness of 260r-2Mo superferritic stainless steel welds has been investigated using alloys containing various nitrogen levels between 100 and 1640 ppm. Mechanical properties of weld metals have been evaluated by microhardness, Charpy impact test and notch tensile test. The alloys are mainly embrittled by the grain boundary and intragranular nitride precipitation. Grain boundary precipitates are considered to be more deleterious than intrauanular nitrides. Fracture mechanism have been elucidated through microscopic evaluation of notch tensile test

Influence of Nickel Electroplating on Hydrogen Chloride Removal of Activated Carbon Fibers

  • Park, Soo-Jin;Jin, Sung-Yeol;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.186-190
    • /
    • 2004
  • In this work, a nickel metal (Ni) electroplating on the activated carbon fiber (Ni/ACFs) surfaces was carried out to remove the toxic hydrogen chloride (HCl) gas. The surface properties of the treated ACFs were determined by using nitrogen adsorption isotherms at 77 K, SEM, and X-ray diffraction (XRD) measurements. HCl removal efficiency was confirmed by a gas-detecting tube technique. As a result, the nickel metal contents on the ACF surfaces were increased with increasing the plating time. And, it was found that the specific surface area or the micropore volume of the ACFs studied was slightly decreased as increasing the plating time. Whereas, it was revealed that the HCl removal efficiency containing nickel metal showed higher efficiency values than that of untreated ACFs. These results indicated that the presence of nickel metal on the ACF surfaces played an important role in improving the HCl removal over the Ni/ACFs, due to the catalytic reactions between nickel and chlorine.

  • PDF

Preparation and Physicochemical Properties of Chitosan from Red Crab Waste-Shell (붉은대게 폐각으로부터 키토산의 제조 및 물리화학적 특성)

  • 김봉섭;박광식;주옥수;서명교;허종화
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-43
    • /
    • 2001
  • Chitosans were prepared from red crab chitin under various alkali treatment conditions(different alkali concentrations, reaction times and temperatures) and theirphysicochemical properties were investigated. The nitrogen content and deacetylation degree of red crab chitin were 6.15% and 22.17A%, respectively. By the IR spectra, red crab and reference chitin showed the sharp bands at 1650 $cm^{-1}$ / and 1550 $cm^{-1}$ /, which are characteristic of chitin. The nitrogen contents of prepared chitosans ranged from 6.19~7.48%. Thedeacetylation degree was increased from 63~76% and 48~78% with increasing reaction time and temperature, whereas viscosity was decreased. The nitrogen content and yield of red crab chitosan perpared from chitin with 50% NaOH, 1:25(w/v) for 3.0 hr at 120$cm^{-1}$ / were 7.26% and 85.0%, respectively. and viscosity, deacetylation degree and molecular weight, 67.0 mPa.s, 75.0% and 6.5$\times$10$^{5}$ Dalton, respectively. From the IR spectra, the amide absorption bands of red crab and reference chitosan became very weak, similarly. And at solid state $^{13}$ C-NMR spectra, C=O(carbonyl carbon) signals absent, whereas $CH_3$(methyl carbon) was residues. Chemical shift of $^{13}$ C-NMR spectra of red crab and reference chitosans were in good agreement with slight experimental deviation.

  • PDF

Growth and fatty acid composition of three heterotrophic Chlorella species

  • Kim, Dae Geun;Hur, Sung Bum
    • ALGAE
    • /
    • v.28 no.1
    • /
    • pp.101-109
    • /
    • 2013
  • Some Chlorella species grow heterotrophically with organic substrate in dark condition. However, heterotrophic Chlorella species are limited and their optimum culture conditions are not fully known. In this study, three heterotrophic Chlorella species, two strains (C4-3 and C4-4) of C. vulgaris and one Chlorella sp. (C4-8) were examined on optimum culture conditions such as carbon source, temperature, and concentrations of nitrogen and phosphorus in Jaworski's medium (JM). And the growth and fatty acid composition of Chlorella were analyzed. For three heterotrophic Chlorella species, glucose (1-2%) as a carbon source only increased the growth and the range of optimum culture temperature was $26-28^{\circ}C$. Doubled concentrations of the nitrogen or phosphorus in JM medium also improved the growth of Chlorella. Chlorella cultured heterotrophically showed significantly higher growth rate and bigger cell size than those autotrophically did. C. vulgaris (C4-3) cultured heterotrophically showed the highest biomass in dry weight ($0.8g\;L^{-1}$) among three species. With respect to fatty acid composition, the contents of C16:0 and n-3 highly unsaturated fatty acid (HUFA) were significantly higher in autotrophic Chlorella than in heterotrophic one and those of total lipid were not different between different concentrations of nitrogen and phosphorus in JM medium. Among three Chlorella species in this study, C. vulgaris (C4-3) appeared to be the most ideal heterotrophic Chlorella species for industrial application since it had a high biomass and lipid content.

Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth II. Effect of seeding density on the content of organic reserves on the wintering period and forage yeild in rape ( Brassica napus L. ) (저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 II. 추파 유채 ( Brassica napus L. ) 의 파종밀도가 월동중 저장유기물 함량 및 수량에 미치는 영향)

  • 김태환;김기원;정우진;전해열;김병호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.4
    • /
    • pp.231-237
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survival or regrowth yield. Forage rape (Brassica napus L.) was sown by three seeding densities of 5, 15 and 25cm interval among plants on Sep. 1, 1994. Field-grown plants were sampled on the before wintering (Dec. 4) and on the wintering period (Jan. 16) to analyze the nitrogen and non-structural cahohydrate reserves. The rate of winter survival and regrowth yield were also measured in the spring of next year. The dry matter yields from the plots of 5, 15 and 25cm seeding interval were 1,270, 1.01 9 and 1,062 kg/lOa respectively, on the before wintering. The similar pattern wa5 observed in the crude protein yields affected by seeding density. On the before wintering, both of nitrogen and starch contents per plant significantly increased as the seeding density was lowered. Starch content was relatively higher than that of nitrogen in all plots. On the wintering period, the contents of nitrogen reserves were 6.5, 41.2 and 121.7 mglplant, those of starch reserves were 1.0, 5.4 and 185.1 mg/plant, respectively, in the plots of 5, 15 and 25cm seeding interval. Nitrogen reserves on the wintering period increased while starch reserves highly decreased in all plots comparing to the before wintering. 'lhe rates of winter survival were 10.2, 20.6 and 37.1%, and regrowth yields were 76, 96 and 178 kgD.M/ IOa, respectively, in the plots of 5, 15 and 25cm seeding interval. These results cleariy showed that seeding density have a close influence on the level of nitrogen and non-structurd cahohydrate reserves, and that the rate of winter survival and regrowth yield were controlled by reserves level on the wintering period.

  • PDF