Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.1.101

Growth and fatty acid composition of three heterotrophic Chlorella species  

Kim, Dae Geun (Department of Marine Bio-materials and Aquaculture, Pukyong National University)
Hur, Sung Bum (Department of Marine Bio-materials and Aquaculture, Pukyong National University)
Publication Information
ALGAE / v.28, no.1, 2013 , pp. 101-109 More about this Journal
Abstract
Some Chlorella species grow heterotrophically with organic substrate in dark condition. However, heterotrophic Chlorella species are limited and their optimum culture conditions are not fully known. In this study, three heterotrophic Chlorella species, two strains (C4-3 and C4-4) of C. vulgaris and one Chlorella sp. (C4-8) were examined on optimum culture conditions such as carbon source, temperature, and concentrations of nitrogen and phosphorus in Jaworski's medium (JM). And the growth and fatty acid composition of Chlorella were analyzed. For three heterotrophic Chlorella species, glucose (1-2%) as a carbon source only increased the growth and the range of optimum culture temperature was $26-28^{\circ}C$. Doubled concentrations of the nitrogen or phosphorus in JM medium also improved the growth of Chlorella. Chlorella cultured heterotrophically showed significantly higher growth rate and bigger cell size than those autotrophically did. C. vulgaris (C4-3) cultured heterotrophically showed the highest biomass in dry weight ($0.8g\;L^{-1}$) among three species. With respect to fatty acid composition, the contents of C16:0 and n-3 highly unsaturated fatty acid (HUFA) were significantly higher in autotrophic Chlorella than in heterotrophic one and those of total lipid were not different between different concentrations of nitrogen and phosphorus in JM medium. Among three Chlorella species in this study, C. vulgaris (C4-3) appeared to be the most ideal heterotrophic Chlorella species for industrial application since it had a high biomass and lipid content.
Keywords
biomass; fatty acid; growth; heterotrophic Chlorella; JM medium;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barclay, W. R., Meager, K. M. & Abril, J. R. 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol. 6:123-129.   DOI   ScienceOn
2 Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14:421-426.   DOI   ScienceOn
3 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25:294-306.   DOI   ScienceOn
4 Choi, Y. E., Yun, Y. -S. & Park, J. M. 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18:1170-1175.   DOI   ScienceOn
5 De Swaaf, M. E., Pronk, J. T. & Sijtsma, L. 2003a. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 61:40-43.   DOI   ScienceOn
6 De Swaaf, M. E., Sijtsma, L. & Pronk, J. T. 2003b. High-celldensity fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol. Bioeng. 81:666-672.   DOI   ScienceOn
7 Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics 11:1-42.   DOI   ScienceOn
8 Grffiths, D. J. 1965. The accumulation of carbohydrate in Chlorella vulgaris under heterotrophic conditions. Ann. Bot. 29:347-357.
9 Guillard, R. L. 1973. Growth measurement. In Stein, J. R. (Ed.) Handbook of Phycological Methods. Cambridge University Press, London, pp. 302-306.
10 Hasegawa, T., Okuda, M., Nomoto, K. & Yoshikai, Y. 1994. Augmentation of the resistance against Listeria monocytogenes by oral administration of a hot water extract of Chlorella vulgaris in mice. Immunopharmacol. Immunotoxicol. 16:191-202.   DOI   ScienceOn
11 Ip, P. -F. & Chen, F. 2005. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40:733-738.   DOI   ScienceOn
12 Justo, G. Z., Silva, M. R. & Queiroz, M. L. 2001. Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal ehrlich ascites tumor transplantation in mice. Immunopharmacol. Immunotoxicol. 23:119-132.   DOI   ScienceOn
13 Lee, Y. -K. 2001. Microalgal mass culture system and methods: their limitation and potential. J. Appl. Phycol. 13:307-315.   DOI   ScienceOn
14 Kim, H. J., Kim, I. H. & Lee, J. H. 2008. Biological activities of ethanol extract from the seawater algae, Chlorella elliposidea C020. Korean J. Biotechnol. Bioeng. 23:125-130.   과학기술학회마을
15 Kim, J. -S. 2004. Preparation of chlorella drinks and its quality characteristics. Korean J. Food Nutr. 17:382-387.   과학기술학회마을
16 Lee, Y. -K. 1997. Commercial production of microalgae in the Asia-Pacific rim. J. Appl. Phycol. 9:403-411.   DOI
17 Liu, B. -H. & Lee, Y. -K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 12:301-307.   DOI   ScienceOn
18 Miao, X. & Wu, Q. 2004. High yield of bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110:85-93.   DOI   ScienceOn
19 Miao, X., Wu, Q. & Yang, C. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis. 71:855-863.   DOI   ScienceOn
20 Morrison, W. R. & Smith, L. M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5:600-608.
21 Olaizola, M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20:459-466.   DOI   ScienceOn
22 Ratledge, C. & Wynn, J. P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 51:1-51.   DOI
23 Tripathi, U., Sarada, R. & Ravishankar, G. A. 2002. Effect of culture conditions on growth of green alga: Haematococcus pluvialis and astaxanthin production. Acta Physiol. Plant. 24:323-329.   DOI   ScienceOn
24 Shi, X. M., Jiang, Y. & Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Proc. 18:723-727.   DOI   ScienceOn
25 Shi, X. -M., Liu, H. -J., Zhang, X. -W. & Chen, F. 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34:341-347.   DOI   ScienceOn
26 Thompson, A. S., Rhodes, J. C. & Pettman, I. 1988. Natural Environmental Research Council Culture Collection of algae and protozoa: catalogue of strains. Freshwater Biology Association, Ambleside, 164 pp.
27 Wen, Z. -Y. & Chen, F. 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 21:273-294.   DOI   ScienceOn
28 Wu, Z. & Shi, X. 2007. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett. Appl. Microbiol. 44:13-18.   DOI   ScienceOn
29 Xiong, W., Li, X., Xing, J. & Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78:29-36.   DOI   ScienceOn
30 Yokochi, T., Honda, D., Higashihara, T. & Nakahara, T. 1998. Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl. Microbiol. Biotechnol. 49:72-76.   DOI   ScienceOn