• Title/Summary/Keyword: Nitrogen and Phosphorus Removal

Search Result 424, Processing Time 0.025 seconds

Aquatic Plant Restoration by Mattress/Filter System in Stagnant Stream Channel (정체수역에서의 Mattress/Filter에 의한 수생식물 복원)

  • Yeo Woon-Ki;Heo Chang-Hwan;Lee Seung-Yun;Jee Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.21-31
    • /
    • 2006
  • Aquatic plants grow in water with photosynthesis and purify water quality as taking organic and inorganic matter in water. Polluted water in stagnant stream channel where nutritive salts load is great can be purified by activities of aquatic plants. Aquatic plants should be fixed to bed easily to plant and sustainable environment is needed. So in this study, Mattress/Filter system is suggested to plant aquatic plant in stagnant stream channel. In the result of study, coverage of Phragmites australis, Zizania latifolia and Typha angustifolia which planted in mattress was $78\%,\;62\%\;and\;82\%$ and numbers of species in each mattress system were 7, 11, 3. The evenness index of each mattress system was 0.86, 0.91 and 0.79 and diversity index of each mattress system was 1.67. 2.18 and 0.87. Removal rates of phosphorus at Phragmites australis, Zizania latifolia and Typha angustifolia which planted in mattress were $68.7\%,\;62.7\%,\;55.3\%$ and removal rates of nitrogen of them were $79.8\%,\;74.7\%,\;64.9\%$. The removal rate of nitrogen was greater than phosphorus at all system and both removal rates were greater at Phragmites australis than at Zirania latifolia and at Typha angustifolia the rate was the least. Removal rates of $PO_4^{-3},\;NH_4-N,\;NO_{3-}N$ at Phragmites australis were $57.4\%,\;52.8\%,\;47.8\%$ and at Zizania latifolia were $82.6\%,\;77.2\%,\;67.5\%$ and at Typha angustifolia were $80.6\%,\;73.7\%,\;64.3\%$. It seems that removal effect is great by the planted mattress system.

Effects of Sediment Removal on Water Quality, Phytoplankton Communities and Benthic Macroinvertebrate (퇴적물 제거가 수질과 식물플랑크톤, 저서성 대형무척추동물에 미치는 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Lee, Eun Jeong;Byeon, Myeong-Seop;Lee, Byoung-cheun;Lee, Jae-Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.301-307
    • /
    • 2018
  • This study investigated the effects of sediment removal on water quality and phytoplankton development by setting up mesocosms at Uiam Lake, South Korea, and analyzing the environmental parameters and phytoplankton communities between June and October 2015. The comparison between testbed without sediment removal (TB-1) and testbed after sediment removal (TB-2) gave similar values for water temperature, pH, dissolved oxygen (DO), and electrical conductivity. Nevertheless, the average electrical conductivities of the two testbeds were $139{\mu}S/cm$ and $135{\mu}S/cm$, which were lower than the value obtained from the external control point (TB-con; $154{\mu}S/cm$). The small difference in total phosphorus (TP) and total nitrogen (TN) concentrations between the two testbeds implied that sediment removal did not greatly reduce nutrients; however, the phytoplankton cell count had decreased by approximately 37 % in TB-2 (average 1,663 cells/mL) compared to TB-1 (average 2,625 cells/mL). Compared to TB-con, the phosphorus and nitrogen concentrations of the two testbeds had decreased by 39 % and 30 %, respectively, whereas the phytoplankton abundance had decreased by up to 73 %, perhaps because of the blocked inflow of nutrients and the stabilized body of water caused by the installation of the mesocosm. The concentration of geosmin was lower in testbeds than in the external point, because installation of the structures had reduced the cyanobacteria biomass.

Potential Use of Microalgae Scenedesmus acuminatus for Tertiary Treatment of Animal Wastewater (축산폐수 고도처리를 위한 미세조류 Scenedesmus acuminatus의 이용 가능성)

  • Park, Ki-Young;Lim, Byung-Ran;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • The green algae Scenedesmus acuminatus was cultured in different media: animal wastewater and an artificial culture medium in order to evaluate potential use for tertiary treatment. The experiments were conducted with air flowrate 1~2 L/min at $28{\sim}30^{\circ}C$. The nitrogen and phosphorus showed very similar removal efficiencies (68~77 % and 69~80 % for nitrogen and phosphorus respectively). The optimal fed period was estimated as three days in the semi-continuous experiment. The effects of $CO_2$ (4.5 %) injection on nutrient uptake from animal wastewater (biological treatment effluent) were compared to an air injection under the same conditions of light and photoperiod. The uptake rates of nutrient with air injection were observed 0.009 gN/gChl-a/day, 0.028 gN/gChl-a/day and T-P 0.003 gP/gChl-a/day for nitrate, total nitrogen and phosphorus respectively. The rates were enhanced by addition of $CO_2$ to 0.026 gN/gChl-a/day, 0.076 gN/gChl-a/day and T-P 0.018 gP/gChl-a/day. This study establishes that $CO_2$ addition during nutrient deprivation of microalgal cells may accelerate tertiary wastewater treatment.

The Removal of Organics and Nutrients in an Anoxic/Oxic Process Using Surface-modified Media (표면개질 담체를 이용만 무산소/호기 공정에서의 유기물 및 영양염류 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • Surface of hydrophobic media was modified to become hydrophilic by ion beam irradiation. Fixed bed biofilm reactors packed with or without surface modification were used to remove organics, nitrogen, and phosphorus from sewage. This system composed of anoxic/oxic cycles to increase the nutrient removal. A cylindrical polyethylene was used as a packing media in this study. With 12 hours of hydraulic retention time (HRT), the reactors with and without surface modification showed 95% and 92% $COD_{cr}$ removal, respectively. Both reactors showed over 95% $COD_{cr}$ removals for a longer HRT of 16 hours. Nitrogen removal ranged 54.8% to 70.2% for the surface modified system and 57.5% to 76.5% for the non-modified system under same condition. Finally, phosphorus removal ranged 59.4% to 69.8% for the surface modified system and 51.3% to 63.4% for the non-modified system under same condition. From this study organics and phosphorus were better removed in using surface modified media and vice versa for nitrogen removal.

Nutrients Removal of Municipal Wastewater and Lipid Extraction with Microalgae (조류를 이용한 하수고도처리 및 지질추출)

  • Park, Sangmin;Kim, Eunseok;Jheong, Weonhwa;Kim, Geunsu;Ahn, Kyunghee;Han, Jinseok;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.796-803
    • /
    • 2012
  • Potential feasibility of nutrients removal and biofuel production with microalgae was evaluated in batch culture. Distribution of microalgae in fresh water including reservoir and river was investigated to search for the species with high content of lipid that could converted into biofuel. Green algae, Chlorella and Scenedesmus sp., these are known as species containing high lipid content for biodiesel production, were observed in both summer and autumn season. However another highly lipid-containing species, botryococcus sp. was not observed in this study. In mixed culture of microalgae using synthesized wastewater medium, green algae were found to be dominant, comparing to other species of diatoms and blue-green algae. And microalgae were also capable of removing nitrogen and phosphorus in batch experiments. During the culture period of 14 days, removal efficiencies of nitrate and phosphorus were 30% and 82%, respectively. Furthermore, content of the intracellular lipid extracted from algae cell was as favorable as 12-30% in the mixed culture where Scenedesmus and Chlorella sp. were dominant. Therefore the mixed culture of microalgae could be applied to biofuel production and tertiary wastewater treatment, even though there are economic barriers to overcome.

Analysis of Treatment Efficiency according to Open-water in Constructed Wetland (인공습지 내 개방수역 조성에 따른 처리효율분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Um, Han-Yong;Kim, Hyung-Jung;Haam, Jong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.

Application of MBBR Process in the Activated Sludge Process (기존 활성슬러지 공정의 MBBR 공정 적용가능성 평가)

  • Park, Woon-Ji;Lee, Hae-Seung;Lee, Chan-Ki;Kim, Sung-Gun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.457-465
    • /
    • 2004
  • The objective of this study is to evaluate the possibility to apply the Moving Bed Biofilm Reactor(MBBR) in the activated sludge treatment process with existing aerobic HRT. Optimal operation conditions were assumed according to the analysis of organic matter and nutrients removal efficiencies depending on loading variations. The process was operated under different conditions: RUN I(HRT=7.14hr, $I{\cdot}R=100%$), RUN II(HRT=6.22hr, $I{\cdot}R=100%$), RUN III(HRT=6.22 hr, $I{\cdot}R=150%$), RUN IV(HRT=6.22hr, $I{\cdot}R=200%$), the TBOD removal efficien cies are 88%, 88.5%, 94.6%, 97.6%, respectively. Overall TSS removal efficiency is 90%, and it is increasing in RUN IV. In the case of Nitrogen, the highest removal efficiency of 90% was observed in RUN III and RUN IV, Nitrification and Denitrification rates are 0.013-0.016kg $NH_3-N/kg$ Mv-d and 0.009-0.019kg $NO_3/kg$ Mv-d, respectively. Phosphorus removal efficiencies are 89.6% in RUN I, 91.5% in RUN II, 84.3% in RUN III, and 76.4% in RUN IV. The process under shorter SRT yields better performance in terms of phosphorus removal. It was noticed that to achieve the effluent phosphorus concentration ofless than 1mg/L and removal efficiency higher than 80%, SRT should not be longer than 10 days. Experimental result shows that HRT of 6.22 hours is suitable for this treatment process, and, as a result, the aerobic reactor including moving media and DO depletion tank have a sufficient effect to the process performance.

Removal of Organic Matter and Nutrient in Swine Wastewater Using a Membrane System

  • Lim, Seung Joo;Kim, Sun Kyong;Lee, Yong-gu;Kim, Tak-Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Swine wastewater was treated using a unique sequence of ion exchange membrane bed system (IEBR). Organic matter and nutrient in swine wastewater was pre-treated by electron beam irradiation. The optimal dose for solubilization of organic matter in swine wastewater ranged from 20 kGy to 75 kGy. The carbohydrates, proteins, and lipids were investigated as the solubilized organic fraction of swine wastewater and proteins and lipids mainly contained of the solubilized organic matter. The solubilization of organic matter in swine wastewater was affected by the combination effect of temperature and a dose. The average chemical oxygen demand (COD) removal efficiency under room temperature conditions was 67.1%, while that under psychrophilic conditions was 54.6%. For removal of ammonia, the removal efficiency decreased from 63.6% at $23^{\circ}C$ to 33.5% $16.8^{\circ}C$. On the other hand, the removal of phosphorus was not a function of temperature. Struvite was one of main mechanisms in anaerobic condition.

Studies on the Nutrient removal potential of selected aquatic plants in the pig waste water. (축산폐수(畜産廢水)의 오염물질제거(汚染物質除去)를 위(爲)한 수초선발이용연구(水草選拔利用硏究))

  • Kim, Bok-Young;Kim, Kyu-Sik;Park, Young-Dae
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 1988
  • The aquatic plants were cultivated in pots containing pig waste water, adjusted to three levels of $NH_4-N$ concentration 50, 100 and 200ppm. The aquatic plants were Eichhornia crassipes solms-laub, Monochoria korsakowii Regel et maack, Zizania caduciflora, Typha orientalis, Acorus asiaticus, Cyperus exaltaus, Colocasia antiquorum var. Yield, content and amount of nitrogen and phosphorus absorped by plants, and growth status were investigated. The results obtained are as follows. 1. The content and removal amount of nitrogen and phosphrus by plants were the highest in Eichhornia crassipes solms-laub. 2. Yield of dry matter in plants in 100ppm $NH_4-N$ was in the order of Eichhornia crassipes solms-laub>Zizania caduciflora>Typha orientalis>Monochoria korsakowii Regel et maack>Acorus asiaticus. 3. The removal amount of nitrogen by plants in the 100ppm $NH_4-N$ was in the order of Eichhornia crassipes solms-laub>Zizania caduciflora>Monochoria korsakowii Regel et maack>Typha orientalis>Acorus asiaticus>Colocasia antiquorum var>Cyperus exaltatus. Removal amount of phosphorus was in the order of Eichhornia cras sipes solms-laub>Monochoria korsakowii Regel et maack>Zizania caducilora>Typha orientalis>Acorus asiaticus> Cyperus exaltatus>Colocasia antiquorum var. 4. Concentration causing growth damage was 200ppm of $NH_4-N$ in Eichhornia crassipes solms-laub, Zizania caduciflora and Typha orientalis and 100ppm in Monochoria korsakowii Regel et maack and Acorus asiaticus. 5. Nitrogen content was the highest in leaf and phosphorus content was the highest in float of the water hyacinth. 6. The number of panicles of the water hyacinth increased by 752 pieces and dry matters were about 5,000kg/l0a during one year.

  • PDF

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.