• Title/Summary/Keyword: Nitrogen adsorption

Search Result 437, Processing Time 0.027 seconds

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation

  • Liu, Feila;Lu, Lu;Xiao, Peng;He, Huichao;Qiao, Lei;Zhang, Yunhuai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2255-2259
    • /
    • 2012
  • Aggregation of titania nanotubes (TNTs) fabricated by hydrothermal method were calcined in air and dry nitrogen; Changes in morphology and crystallinity of the nanotubes were studied by means of TEM, EDX, and XPS. EDX patterns and XPS spectra proved that there were a certain densities of oxygen vacancies in TNTs annealed in $N_2$. The photocatalysis experiments revealed TNTs/$N_2$ possesses significantly higher photocatalytic efficiency than TNTs annealed in dry air to degrade methylene blue. The correlation between oxygen vacancies and photocatalytic property may be attributed to: 1) oxygen vacancies might have affected results on water molecules adsorption and increase of the hydroxyl concentration; and 2) oxygen vacancies resulted in some changes in electronic structure of TNTs/$N_2$ aggregation and Fermi level extends into the conducting band.

Manufacture of Activated Carbon based on Solid Residue after Lignin Pyrolysis (리그닌 열분해 잔류고형물을 원료로 한 활성탄의 제조)

  • Lee, Jong-Jib;Yoon, Sung-Wook;Lee, Byung-Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.133-139
    • /
    • 2000
  • In this study, activated carbon was prepared from solid residue after lignin pyrolysis by using zinc chloride as an activation agent. The steam activation method was adopted to manufacture activated carbon from solid residue after lignin pyrolysis. The effect of process operation variables such as activation temperature, activation time and mass of activation agent added to char on the pore structure and specific surface area of the activated carbon was investigated. Activated carbon with high surface area and well-developed pore structure could be prepared, when solid residue after lignin pyrolysis was mixed with zinc chloride of 300 wt% and then the mixture was activated for 1 hour at $1000^{\circ}C$ in a stream of nitrogen.

  • PDF

Thermal Characteristics Simulation with Detecting Temperature for the Wearable Nylon-Yarn NOx Gas Sensors (웨어러블용 Nylon-Yarn NOx 가스 센서의 검출 온도 변화에 따른 열 특성 시뮬레이션)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.321-325
    • /
    • 2020
  • Atmospheric environmental problems have a major impact on human health and lifestyle. In humans, inhalation of nitrogen oxides causes respiratory diseases, such as bronchitis. In this paper, thermal analysis of a gas sensor was carried out to design and fabricate a wearable nylon-yarn gas sensor for the detection of NOx gas. In the thermal analysis method, the thermal diffusion process was analyzed while operating the sensors at 40 and 60℃ to secure a temperature range that does not cause thermal runaway due to temperature in the operating environment. Thermal diffusion analysis was performed using the COMSOL software. The thermal analysis results could be useful for analyzing gas adsorption and desorption, as well as the design of gas sensors. The thermal energy diffusion rate increased slightly from 10.05 to 10.1 K/mm as the sensor temperature increased from 40 to 60℃. It was concluded that the sensor could be operated in this temperature range without thermal breakdown.

Hydration Characteristics of Cement Containing Zeolite (제올라이트가 함유된 시멘트의 수화 특성)

  • Lee, Chang-Yong;Kim, Youn Cheol;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.423-428
    • /
    • 2011
  • Hydration characteristics of cement containing zeolite mined at Daepo in Gyeongbuk province were studied for use as a mineral admixture. The cement paste containing zeolite was characterized by the measurement of heat evolution, XRD, EDS, nitrogen adsorption and mercury intrusion porosimetry. The cement paste containing zeolite exhibited tendencies toward acceleration of paste setting and promotion of cement hydration with the increase of zeolite content. The flow of mortar containing zeolite strongly reduced with increase of zeolite content. Compressive strength of the mortar containing zeolite increased very rapidly at an early age in comparison with plain mortar. These results would be related to aluminum species escaped from zeolite particles during the alkali dealumination of zeolite by the hydration process of cement.

Polarographic Behavior of Oxovanadium (IV) Complex of Mercaptopyridine N-Oxide

  • Shim, Yoon-Bo;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.225-230
    • /
    • 1987
  • The redox properties of 2-mercaptopyridine N-oxide (mpno) and its oxovanadium complex, $VO (mpno)_2$ have been studied by the use of polarography and cyclic voltammetry. The radical anion of mpno is generated in acetone and is adsorbed to the electrode to form an adsorption wave at -0.21 V vs Ag/AgCl electrode. The normal wave appeared at -0.50 V is attributed to the formation of radical anion. The $VO (mpno)_2$ exhibits one oxidation wave at +0.57 V, and two reduction waves at -1.07 V and -1.76 V vs. Ag/AgCl electrode; the oxidation is fully reversible one-electron process ($VO (mpno)_2\;{\leftrightarrow}\;VO(mpno)_2^+ + e).$ The reduction wave at -1.07 V is quasireversible and is arised from the formation of $VO (mpno)_2^-.$ The second reduction wave at -1.76 V is irreversible and this reduction process consists of two one-electron steps. The sulfur containing ligands seem to enhance the stability of lower oxidation state of vanadium while the oxygen or nitrogen donor of the ligands stabilize the higher oxidation state of vanadium when comparisons are made among several oxovanadium complexes.

Physical Propertise of Non-Cement Matrix with Red Mud (레드머드를 혼입한 무시멘트 경화체의 물리적 특성)

  • Kwon, Hyeong-Soon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.93-94
    • /
    • 2023
  • Through the industrial revolution that began in the 18th century, the amount of carbon dioxide in the atmosphere increased rapidly as humans used fossil energy such as coal and oil as fuel for steam engines and factory machines. The amount of carbon dioxide emitted while producing cement, the main material of concrete used in construction, is large enough to account for 5-8% of the world's carbon dioxide emissions. In this study, Non cement-based matrix were used to reduce carbon dioxide emissions from cement production. Red mud is an industrial by-product generated in the manufacturing process of aluminum hydroxide using bauxite, and more than 120 million tons are produced worldwide. In addition, red mud is a porous material that can be physically adsorbed, and causes a photocatalytic reaction of TiO2 to remove harmful substances such as nitrogen oxide formaldehyde in the air and chemically adsorbs ammonia and hydrogen sulfide. Therefore, this study aims to examine the physical properties of the matrix by mixing red mud, an industrial by-product with good adsorption performance, into the Non cement-based matrix.

  • PDF

Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation (Polysilfone 막의 제조에 있어 제막용액에 첨가된 비용매의 영향)

  • 한명진
    • Membrane Journal
    • /
    • v.6 no.3
    • /
    • pp.157-165
    • /
    • 1996
  • Polysulfone(PS) membranes were prepared from homogeneous PS solutions by the phase inversion technique. When propionic acid(PA) was added into a casting solution of n-methylpyrrolidone(NMP) and PS, precipitation rate of the solution film was accelerated. This kind of acceleration was consistent, even though a precipitating nonsolvent was changed from water to isopropanol. These phenomena were caused by decrease of nonsolvent tolerance in the casting solution due to addition of PA. PS powder was prepared by precipitation of a 3wt% solution in dimethylformamide(DMF) using ethanol as nonsolvent. Gas adsorption analysis of the powder showed that the capillary condensation sites were found in the powder structure. Membranes prepared from PS solution(15wt%) in NMP had the following characteristics of gas adsorption and water permeation. In gas adsorption analysis, the membrane precipitated using isopropanol showed low uptake of nitrogen gas and the capillary condensation sites were not found. On the contrary, a significant amount of the capillary condensation sites was found in the membrane coagulated by water, which was related to increase of nitrogen uptake. tn the membrane prepared froin the solution including PA, an increase of the Henry's law sites and the Langmuir sites was not found clearly. However, the capillary condensation sites were significantly increased, and the water transport also increased.

  • PDF

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.

Performance Evaluation for the A/O Pure-Oxygen Biofilm (POB) Process on the Removal of Organics and TKN in the Industrial Wastewater (혐기/호기 순산소 생물막공법에 의한 산업폐수의 유기물 및 TKN 제거 성능평가)

  • Jang, Am;Kim, Hong Suck;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.837-847
    • /
    • 2000
  • For the treatment of wastewaters generated from beer industry and petrochemical company with high organic and nitrogen contents, laboratory scale of A/O Pure-Oxygen Biofilm (POB) process was developed and studied by means of the comparative economic analysis with extended aeration process. When the wastewater of beer company was initially treated by the A/O POB process in the ranges of 70 to 150 mg TOC/L diluted with tap water, higher than 92% of TOC removal was accomplished in the all ranges. In case of petrochemical wastewater, the initial TOC removal was as low as 52%, though, it increased to 86% after 32 days of operation and also the TKN removal marked 71% after 27 days. Continuous high removal rates were monitored in both the TOC and TKN parameters during the experimental period. Due to the cost for PSA (Pressure Swing Adsorption) setting and biomass supporting media installation, the initial construction cost of A/O POB process was 2.9 times higher than that of extended aeration process. However, the advantages such as low sludge production, no need for sludge recycling and low energy consumption allow the A/O POB process to have 2.5 times lower operation and maintenance costs. Consequently, in the long term of operation, it is likely that A/O POB process would show higher performance as well as cost effectiveness compared to extended aeration process.

  • PDF