DOI QR코드

DOI QR Code

Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation

  • Liu, Feila (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Lu, Lu (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Xiao, Peng (College of Physics, Chongqing University) ;
  • He, Huichao (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Qiao, Lei (College of Chemistry and Chemical Engineering, Chongqing University) ;
  • Zhang, Yunhuai (College of Chemistry and Chemical Engineering, Chongqing University)
  • Received : 2011.11.30
  • Accepted : 2012.04.02
  • Published : 2012.07.20

Abstract

Aggregation of titania nanotubes (TNTs) fabricated by hydrothermal method were calcined in air and dry nitrogen; Changes in morphology and crystallinity of the nanotubes were studied by means of TEM, EDX, and XPS. EDX patterns and XPS spectra proved that there were a certain densities of oxygen vacancies in TNTs annealed in $N_2$. The photocatalysis experiments revealed TNTs/$N_2$ possesses significantly higher photocatalytic efficiency than TNTs annealed in dry air to degrade methylene blue. The correlation between oxygen vacancies and photocatalytic property may be attributed to: 1) oxygen vacancies might have affected results on water molecules adsorption and increase of the hydroxyl concentration; and 2) oxygen vacancies resulted in some changes in electronic structure of TNTs/$N_2$ aggregation and Fermi level extends into the conducting band.

Keywords

References

  1. Kasemo, B.; Gold, J. Adv. Dent. Res. 1999, 13, 8. https://doi.org/10.1177/08959374990130011901
  2. Heller, A. Acc. Chem. Res. 1995, 28, 503. https://doi.org/10.1021/ar00060a006
  3. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
  4. Ghicov, A.; Suchiya, H.; Macak, J. M.; Schmuki, P. Electrochem. Commun. 2005, 7, 505. https://doi.org/10.1016/j.elecom.2005.03.007
  5. Sander, M. S.; Cote, M. J.; Gu, W.; Kile, B. M.; Tripp, C. P. Adv. Mater. 2004, 16, 2052.
  6. Michailowski, A.; AlMawlawi, D.; Cheng, G. S.; Moskovits, M. Chem. Phys. Lett. 2001, 349, 1. https://doi.org/10.1016/S0009-2614(01)01159-9
  7. Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Ed. 2005, 44, 2100. https://doi.org/10.1002/anie.200462459
  8. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160. https://doi.org/10.1021/la9713816
  9. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11, 1307. https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
  10. Lu, L.; Zhang, Y. H.; Xiao, P.; Zhang, X. N.; Yang, Y. N. Environ. Sci. Technol. 2010, 27, 281.
  11. Zhang, Y. H.; Xiao, P.; Zhou, X. Y.; Liu, D.; Garcia, B. B.; Cao, G. Z. J. Mater. Chem. 2009, 19, 948. https://doi.org/10.1039/b818620k
  12. Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.
  13. Hou, Q.; Zhang, Y.; Zhang, T. Acta Optica Sinica 2008, 28, 1347. https://doi.org/10.3788/AOS20082807.1347
  14. Petigny, S.; Domenichini, B.; Mostefa-sba, H.; Lesniewska, E.; Steinbrunn, A.; Bourgeois, S. Appl. Surf. Sci. 1999, 142, 114. https://doi.org/10.1016/S0169-4332(98)00661-8
  15. Schaub, R.; Wahlstrom, E.; Anders, R.; Lsgaard, E.; Stensgaard, I.; Besenbacher, F. Science 2003, 299, 17. https://doi.org/10.1126/science.299.5603.17
  16. Wang, L. Q.; Baer, D. R.; Engelhard, M. H. Surf. Sci. 1994, 320, 295. https://doi.org/10.1016/0039-6028(94)90317-4
  17. Norenberg, H.; Dinelli, F.; Briggs, G. A. D. Surf. Sci. 2000, 446, L83. https://doi.org/10.1016/S0039-6028(99)01134-6
  18. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Nature 1997, 388, 431. https://doi.org/10.1038/41233
  19. Noworyta, K.; Augustynski, J. Solid-State Lett. 2004, 7, E31. https://doi.org/10.1149/1.1695536
  20. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A. Sol. Energy Mater. Sol. Cells 2006, 90, 2011. https://doi.org/10.1016/j.solmat.2006.04.007
  21. Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Nano. Lett. 2006, 6, 1080. https://doi.org/10.1021/nl0600979
  22. Vitiello, R. P.; Macak, J. M.; Ghicov, A.; Tsuchiya, H. L.; Dick, F. P.; Schmuki, P. Electrochem. Commun. 2006, 8, 544. https://doi.org/10.1016/j.elecom.2006.01.023
  23. Gopel, W.; Anderson, J. A.; Frankel, D.; Jaehnig, M.; Phillips, K.; Schafer, J. A.; Rocker, G. Surf. Sci. 1984, 139, 333. https://doi.org/10.1016/0039-6028(84)90054-2
  24. Henderson, M. A.; Epling, W. S.; Perkins, C. L.; Peden, C. H. F. J. Phys. Chem. B 1999, 103, 5328.
  25. Diebold, U.; Lehman, J.; Mahmoud, T.; Kuhn, M.; Leonardelli, G.; Hebenstreit, W.; Schmid, M.; Varga, P. Surf. Sci. 1998, 411, 137. https://doi.org/10.1016/S0039-6028(98)00356-2
  26. Gopel, W.; Rocker, G.; Feierabend, R. Phys. Rev. B 1983, 28, 3427. https://doi.org/10.1103/PhysRevB.28.3427
  27. Linsebigler, A.; Lu, G.; Yates, J. T. J., Jr. Chem. Phys. 1995, 103, 438.
  28. Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stengsgaard, I.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87, 266104. https://doi.org/10.1103/PhysRevLett.87.266104
  29. Guillemot, F. M.; Porte, C.; Labrugere, C.; Baquey, C. J. Col. Int. Sci. 2002, 255, 75. https://doi.org/10.1006/jcis.2002.8623
  30. X, P. Thesis for the Doctorate of Chongqing University 2008, 44.
  31. Subero, J.; Ning, Z.; Ghadiei, M.; Thornton, C. Powder Technol. 1999, 105, 66. https://doi.org/10.1016/S0032-5910(99)00119-9
  32. Hou, Q. Y.; Zhang, Y.; Zhang, T. Acta Optica. Sinica. 2008, 28, 1347. https://doi.org/10.3788/AOS20082807.1347
  33. Li, X. Q.; Qiao, G. J.; Chen, J. Journal of the Chinese Ceramic Society 2006, 34, 1466.
  34. Heller, A.; Degani, Y.; Johnson, D. W.; Gallagher, P. K.; Gallagher, Jr. Phys. Chem. 1987, 91, 5987. https://doi.org/10.1021/j100307a035
  35. Zhang, Y. H.; Xiao, P.; Zhou, X. Y.; Liu, D. W.; Cao, G. Z. J. Mater. Chem. 2009, 19, 948. https://doi.org/10.1039/b818620k
  36. Liu, D. W.; Zhang, Y. H.; Xiao, P.; Garcia, B. B.; Zhang, Q. F.; Zhou, X. Y.; Cao, G. Z. Electrochim. Acta 2009, 54, 6816. https://doi.org/10.1016/j.electacta.2009.06.090
  37. Cong, Y.; Xiao, L.; Zhang, J. Res. Chem. Intermed. 2006, 32, 717. https://doi.org/10.1163/156856706778606525
  38. Burda, C.; Lou, Y.; Chen, X. Nano Lett. 2003, 3, 1049. https://doi.org/10.1021/nl034332o

Cited by

  1. nanorod arrays vol.7, pp.81, 2017, https://doi.org/10.1039/C7RA09801D
  2. nanotubes based photoanodes vol.29, pp.1, 2017, https://doi.org/10.1088/1361-6528/aa96c3
  3. Tunable band gap of Bi3+-doped anatase TiO2 for enhanced photocatalytic removal of acetaminophen under UV-visible light irradiation vol.9, pp.1, 2019, https://doi.org/10.2166/wrd.2018.021
  4. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment vol.113, pp.23, 2012, https://doi.org/10.1063/1.4811540
  5. Control of Optical Band Gap in La Doped Bismuth Titanate with Two Stage Doping vol.597, pp.1, 2012, https://doi.org/10.1080/15421406.2014.931786
  6. Correlation of lattice defects and thermal processing in the crystallization of titania nanotube arrays vol.1, pp.4, 2012, https://doi.org/10.1088/2053-1591/1/4/045018
  7. A facile general route for ternary Fe2O3@TiO2νanometal (Au, Ag) composite as a high-performance and recyclable photocatalyst vol.43, pp.None, 2016, https://doi.org/10.1016/j.jiec.2016.07.060
  8. Influence of Solvents' Polarity on the Physicochemical Properties and Photocatalytic Activity of Titania Synthesized Using Deinbollia pinnata Leaves vol.8, pp.None, 2012, https://doi.org/10.3389/fchem.2020.597980
  9. Photoelectrochemical reduction of CO2 over Ru/Mn/Co trimetallic catalysts supported anatase TiO2 under visible light irradiation vol.94, pp.2, 2012, https://doi.org/10.1007/s10971-020-05277-0
  10. Strong Light-Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO 4 for Photoelectrochemical Water Splitting vol.13, pp.10, 2020, https://doi.org/10.1002/cssc.202000294