• Title/Summary/Keyword: Nitrogen Uptake

Search Result 592, Processing Time 0.026 seconds

Tillage practices and fertilization effects on growth and nitrogen efficiency in soybean

  • Roy, Swapan Kumar;Jung, Hyun-Jin;Yoo, Jang-Hwan;Kwon, Soo Jeong;Yang, Jong-Ho;Kim, Sook-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.356-356
    • /
    • 2017
  • A field experiment was performed to evaluate the effects of tillage systems and fertilizer management on yield and nutrient uptake in Soybean. The plant height, fresh weight and dry weight of conventional tillage were much higher those observed for no-tillage. Significant differences in plant height were observed under tillage practices combined with fertilizer treatment. However, the greatest plant height (128.47 cm) was observed in conventional tillage with chemical fertilizer, and the lowest (45.4 cm) was observed in the no-tillage with green manure treatment. The highest fresh weight (172.4 g) and dry weight (44.1 g) were observed from the no-tillage chemical treatment in the late flowering stage of soybean. The plant concentration of nitrate was higher (2.29%) in no-tillage with green manure than it was with chemical fertilization. However, nitrogen increased steadily in all treatments, and the highest quantity of total nitrogen (476.7 Kg/ha) was observed in no-tillage with green manure. The N content in the soil decreased gradually just after the vegetative stage. Tillage practices and additional fertilizer application had an adverse effect on the uptake of N, P and K in soybean seeds. The nitrogen concentration in seeds was found to be increased in the no-tillage with green manure treatment. The uptake of more nitrogen induced a better yield. Thus, the no-tillage with green manure treatment had the greatest yield, although no significant difference was observed among foliar-applications and additional fertilization. Additionally, the phosphorus and potassium concentrations in seeds remained the same between the conventional tillage and no-tillage treatments. The results obtained in this study indicate that no-tillage strategies with fertilizers may influence the growth characteristics and mineral uptake in soybean.

  • PDF

Studies on the Growth Characters and Nutrient Uptake Related to Source and Sink by Cool Water Temperature at Reproductive Growth Stage III. Influence of Growth Characters and Nutrient Uptake Related to Panicle by Different Water Temperature and Water Depth (생식생장기 냉수온이 벼의 Source와 Sink 관련형질 및 양분흡수에 관한 연구 III. 관개수온과 수심이 수의 관련제형질 및 양분흡수에 미치는 영향)

  • 최수일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.242-248
    • /
    • 1986
  • To study the effect of cold water irrigation at the reproductive growth stage of rice plants on several growth characters related to source and sink and nutrient uptake, the present experiment was carried out under the different conditions of water temperature and water depth. Deep irrigation with normal temperature water increased culm length, panicle length and panicle exsertion but with cold water resulted adversely. Most sensi-tive response in 5 cm water-depth appeared at reduction division stage and in 20 cm depth at panicle formation stage. Secondary branches and spikelets were increased in number by deep irrigation with normal temperature water, but decreased and degenerated by deep irrigation with cold water at panicle formation stage resulting in high spikelet sterility and low grain filling. Deep irrigation with normal temperature water increased the contents of total nitrogen, phosphate, potassium and silicate in leaf blades, branches and chaff. However, cold water irrigation reduced the uptake of phosphate, potassium and silicate except nitrogen particularly in deep irrigation. Ratios of phosphate, potassium and silicate to total nitrogen content were decreased by cold water irrigation. Branches seemed to have higher requirements for phosphate, potassium and silicate than leaf blades and chaff. Silicate-to-total nitrogen ratio in leaf blades, branches and chaff had significant correlations with yield showing closer relationship between yield and the ratio of silicate to total nitrogen in branches in particu-lar.

  • PDF

Nitrogen Patitioning at Low Temperature in Fall-Sowing Species I. Uptake of exogenous N and remobilization of endogenous N (추파 청예작물의 저온 조건하에서 질소의 분배에 관한 연구 I. 외인성 질소의 흡수 및 내인성 질소의 전이)

  • Kim, Tae-Hwan;Kim, Byung-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 1997
  • A pulse-chase labeling of $^{15}N$ on winter rye (Scale cereale) and forage rape (Brassica napus) grown at $15^{\circ}C$ and $25^{\circ}C$ was carried out to determine the effects of low temperature on the uptake exogenous N and the remobilization of endogenous N. The growth rate of leaves and roots depressed at $5^{\circ}C$. AAer 9 days at $5^{\circ}C$, nitrogen content of leaves decreased to 20% on the average while that of roots increased to 12% compared with the plants grown at $25^{\circ}C$. Total content of $NO_3$- uptake 60m medium was 23.0 and 43.5 mg Nlplant, respectively, for winter rye and forage rape grown at $5^{\circ}C$ during 9 days. These values were corresponded to 59.3 and 26.1% lower uptake than those of $25^{\circ}C$. A large part of 1 5 ~ was distributed into leaves throughout time course in both of two species. The content of $^{15}N$ in leaves of winter rye at day 6 increased to 166 and 296 $\mu^{15}$N/plant compared with the initial value (day 0) in the plants grown at $5^{\circ}C$and $25^{\circ}C$ , corresponding to 90 and 163 $\mu$g N of remobilization h m roots into leaves during the fist 6 days. From 7 to 9 days, 75 and 52 $\mu$gN of outflow 6om leaves were occurred at $5^{\circ}C$ and $25^{\circ}C$. However, little remobilization of endogenous N was estimated in forage rape throughout the entire time course regardless of temperature treatment. Comparing two species studied, winter rye was much sensitively influenced by low temperature on the uptake of exogenous N and the remobilization of endogenous N.

  • PDF

Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery

  • Knoop, Jessica;Barrento, Sara;Lewis, Robert;Walter, Bettina;Griffin, John N.
    • ALGAE
    • /
    • v.37 no.3
    • /
    • pp.213-226
    • /
    • 2022
  • Aquaculture is one of the fastest growing food producing sectors; however, intensive farming techniques of finfish have raised environmental concerns, especially through the release of excessive nutrients into surrounding waters. Biodiversity has been widely shown to enhance ecosystem functions and services, but there has been limited testing or application of this key ecological relationship in aquaculture. This study tested the applicability of the biodiversity-function relationship to integrated multi-trophic aquaculture (IMTA), asking whether species richness can enhance the efficiency of macroalgal bioremediation of wastewater from finfish aquaculture. Five macroalgal species (Chondrus crispus, Fucus serratus, Palmaria palmata, Porphyra dioica, and Ulva sp.) were cultivated in mono- and polyculture in water originating from a lumpfish (Cyclopterus lumpus) hatchery. Total seaweed biomass production, specific growth rates (SGR), and the removal of ammonium (NH4+), total oxidised nitrogen (TON), and phosphate (PO43-) from the wastewater were measured. Species richness increased total seaweed biomass production by 11% above the average component monoculture, driven by an increase in up to 5% in SGR of fast-growing macroalgal species in polycultures. Macroalgal species richness further enhanced ammonium uptake by 25%, and TON uptake by nearly 10%. Phosphate uptake was not improved by increased species richness. The increased uptake of NH4+ and TON with increased macroalgal species richness suggests the complementary use of different nitrogen forms (NH4+ vs. TON) in macroalgal polycultures. The results demonstrate enhanced bioremediation efficiency by increased macroalgal species richness and show the potential of integrating biodiversity-function research to improve aquaculture sustainability.

Apparent Dominance of Regenerated Primary Production in the Yellow Sea

  • Park, Myung-G.;Yang, Sung-R.;Shim, Jae-H.;Hong, Gi-H.;Chung, Chang-S.;Yang, Dong-B.;Cho, Byung-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.20-25
    • /
    • 2004
  • The Yellow Sea is known to be a very productive region in terms of fisheries. However, its trophic status seems to be highly variable, ranging from oligotrophic to eutrophic, based on new production (NP) values. The NP and regenerated production (RP) values estimated from $^{15}N$-labelled nitrate and ammonium uptake in spring (April 1996) and winter (February 1997) during this study ranged from 0.05 to 19.8 mg $N m^{-2} d^{-1}$ and from 0.1 to 22.8 mg $N m^{-2}d^{-1}$, respectively. Our measurements and earlier observations suggested that NP in the Yellow Sea varied over the four orders of magnitude (range 0.05-180.9 mg $N m^{-2} d^{-1}$) temporally and spatially, and that RP (range 0.1-507.5 mg $N m^{-2}d^{-l}$) based on ammonium predominated during most period of the year, except in winter when both productions were low. The significant nitrogen uptake by phytoplankton below the euphotic zone and episodic entrainment of phytoplankton from below the euphotic zone into the euphotic zone, and nitrite excretion and dissolved organic nitrogen release during nitrate uptake might explain the apparent dominance of RP in the Yellow Sea.

Analysis of Floating Island Operation in the Paldang Lake (팔당호 수초재배섬의 운영 사례 분석)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1038-1044
    • /
    • 2006
  • The floating island was investigated in order to make a purification of lake water quality with the uptake of nutrients, the prevention of algae growth and the supply of habitat for aquatic plants. Although the concentrations of organics and nutrients inside facility were shown higher than outside, the quantitative analysis was not attainable. Nitrogen uptakes by Cattail, Phragmites japonica, Reed and Wild rice were shown 48.2, 98.0, 111.1 and $72.0g/m^2{\cdot}year$, respectively, and in the case of phosphorus they were 3.2, 8.3, 6.1 and $4.6g/m^2{\cdot}year$, respectively. Considering total floating areas of $2,560m^2$, the nitrogen uptake is totally estimated to $210.7kg/m^2{\cdot}year$ and $14.2kg/m^2{\cdot}year$ for the phosphorus uptake. In order to promote the spread of floating island, the selection of aquatic plants, the control of growth rate properly and the method of quantitative analysis for the purification of water quality and the application to the stream water should be thoroughly surveyed from all angles prior to the application.

A Comparison of Nitrogen Cycling among Young Pinus koraiensis Plantations of Different Ages (잣나무 유림의 수령에 따른 질소순환의 비교)

  • Cho, Kang-Hyun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.245-256
    • /
    • 1989
  • Nitrogen cycling was in vestigated in Piuns koraiensis plantations with different ages, 1, 2, 3, 6, 9 and 11 years, which were reforested after clear-cutting. Annual N input by bulk precipitation was 10kg., and output by runoff decreased as the plantation aged, especially in-N. The standing N content of the whole vegetation increased approximately 5 times through 11 years. Understory surpassed P. koraiensis plants in the distribution of standing N content for the initial 9 years, but reversed thereafter. Annual N uptake of P. koraiensis plants increased greatly through 11 years, but that of understory increased somewhat until 9 years and decreased thereafter. The maximum N uptake of the whole vegetation was made in the 9-yr-old plantation. In the 1-yr-old one, 59% of the maximum was already absorbed by understory which mainly consisted to herbs. The recycling coefficient, ratio of annual return to rptake, of the whole vegetation decreased as the plantation aged and the value of understory was greater than that of P koraiensis plants. On the contrary, the N use efficiency, ratio of the net primary production to N uptake, of the whole vegetation increased as the plantation aged and the value of understory was less than that of P. koraiensis plants. Consequently, it is emphasized that understory played an important role in such plantation reforesred after clear-cutting for the initial 9 years.

  • PDF

Estimation of the Nitrogen and Base Cation Uptake of South Korean Forest (남한 삼림의 질소와 염기성 양이온의 흡수량 추정)

  • Sim, Jae-Myeon;Park, Sun-Ung
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2001
  • Estimation of the annual net production, nitrogen (N) and base cation (BC=K, Mg, Ca) uptake by stocked forests in South Korea has been done with national statistical data of forestry from 1995 to 1999. The annual net production of stems and branches was about 1.8 ton DM ha/sup -1/ yr/sup -1/. The net productivity of deciduous forests was higher than that of coniferous forests. Total net production of the stocked forests from the whole stocked area of South Korea of 6.246×10/sup 6/ ha, was about 1.13×10/sup 7 ton DM/yr, and the total harvested biomass obtained from timber production data in 1999, was estimated about 6.1×105 ton DM/yr that was equivalent to 98 kg DM ha/sup -1/ yr/sup -1/f. Net growth uptake of N and BC were 350 mol ha/sup -1/ yr/sup -1/ and 296 mol ha/sup -1/ yr/sup -1/ respectively, and the content of N and BC contained in the harvested biomass were 20 mol ha/sup -1/ yr/sup -1/ and 16 mol ha/sup -1/ yr/sup -1/ respectively. Net uptake of N was higher than that of BC. Total net uptake of N and BC from growth and harvest by stocked forests in South Korea were 2.309×10/sup 9/ mol/yr and 1.953×10/sup 9 mol/yr respectively.

  • PDF

The Contribution of Molecular Physiology to the Improvement of Nitrogen Use Efficiency in Crops

  • Hirel, Bertrand;Chardon, Fabien;Durand, Jacques
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.123-132
    • /
    • 2007
  • In this review, we discuss the ways in which our understanding of the controls of nitrogen use efficiency applied to crop improvement has been increased through the development of molecular physiology studies using transgenic plants or mutants with modified capacities for nitrogen uptake, assimilation and recycling. More recently, exploiting crop genetic variability through quantitative trait loci and candidate gene detection has opened new perspectives toward the identification of key structural or regulatory elements involved in the control of nitrogen metabolism for improving crop productivity. All together these studies strongly suggest that in the near future nitrogen use efficiency can be improved both by marker-assisted selection and genetic engineering, thus having the most promise for the practical application of increasing the capacity of a wide range of economically important species to take up and utilize nitrogen more efficiently.

  • PDF

The effect of dry matter allocation at the early seedling stare on the growth of two grass species (두 초본 종의 생장에 있어서 실생 초기의 물질분해 효과)

  • Park, Young-Mok
    • The Korean Journal of Ecology
    • /
    • v.15 no.3
    • /
    • pp.297-309
    • /
    • 1992
  • The growth of digitaria adscendens and eleusine indica, annual weeds common in japan, was experimentally analyzed under varying untrient conditions. compared with e. indica, d. adscendensshowed a higher the two under high nitrogen availability. Higher net assimilation rate(nar) in d. adscendens than e. india was responsible for high RGR in D. adscendens under the low nitrogen availability. The different of NAR in the two species was induced not by leaf nitrogen content but by nitrogen use efficiency. Under unfertilized conditions nitrogen uptake rate(nur) was greater in d. adscendens than e. indica. Specific absorption rate in two species was similar, but root mass was greater in d. adscendens than e. indica.d. adscendens allocated more dry matter to roots than e. india earlier stage of seedlings. The contributed to higher rot mass and in turn resulted in higher nur in d. adscendens than that in e. india. It is concluuded that the larger allocation of dry matter to roots at early seedling stage in d. adscendens plays an important role in obtaining nitrogen for the continuation of growth under low nitrogen availability.

  • PDF