• Title/Summary/Keyword: Nitrogen Removal

Search Result 1,355, Processing Time 0.026 seconds

Effect of Hydraulic Retention Time on Biological Nitrogen Removal in Land-based Fish Farm Wastewater (육상양식장 배출수내 생물학적 질소처리시 수리학적 체류시간의 영향)

  • Park, Noh-Back
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.3
    • /
    • pp.250-256
    • /
    • 2017
  • This study investigated the removal efficiency of organic matter and nitrogen from fish farm effluent by hydraulic retention time (HRT) using an upflow biological filter (ANR system) reactor. The recycling time and influent flow in the reactor were controlled to 14.8, 7.4, 5.5 and 3.2 h to evaluate HRT. In addition, each reactor was coupled to a fixed bed upflow filter charged with media. The results showed that removal efficiency was ${\geq}95%%$ with an HRT of 5.5 h, and nitrification efficiency was reduced to 81% with an HRT of 3.2 h, although nitrification efficiency temporarily decreased due to the shock load as HRT decreased. Total nitrogen removal rate was also reduced to about 65% with an HRT of 3.2 h, which was considered a washout effect of nitrifying and denitrifying microorganisms by increasing the shearing force to the filter media, which decreased organic matter and nitrogen removal efficiency.

Performances of Intermittently Aerated and Dynamic Flow Activated Sludge Process (2단간헐폭기 및 유로변경 간헐폭기 활성슬러지 시스템을 이용한 도시하수 처리)

  • 원성연;민경국;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 1998
  • Removal of nitrogen and phosphate in wastewater is concerned to important for the prevention of eutrophication in receiving water and lake. Conventional activated sludge system designed for organics removal can be retrofitted only by modification of aeration basin to maintain anaerobic and aerobic state. Biological nutrient removal processes(BNR) such as Bardenpho, A$^{2}$/O, UCT, VIP were generally used for the treatment of wastewater. However these BNR processes used in large scale WWTP were not suitable in small scale WWTP(i.e., package type WWTP) due to relatively large fluctuation of flow rate and concentration of pollutants. The purpose of this research was to develop the compact, effective and economical package type WWTP for the removals of carbon and nitrogen in small scale wastewater. Intermittently aerated activated sludge system (IADFAS) were investigated for removal of nitrogen in both domestic wastewater, Bardenpho process was also evaluated. Nitrogen removal of IAAS, IADFAS, Bardenpho were 75, 77 and 67%, respectively.

  • PDF

Variation of Phosphorus and Nitrogen Removal Characteristics According to the Decrease of Influent Phosphorus Concentration in SBR and SBBR (SBR과 SBBR에서 유입 인 농도 감소에 따른 인과 질소의 제거 특성 변화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2010
  • The purpose of this study is to investigate the effect of influent phosphorus concentration on the nitrogen and phosphorus removal in sequencing batch reactor(SBR) and sequencing batch biofilm reactors(SBBRs) in order to recover the enhanced biological phosphorus removal (EBPR) capacity at the sludge of the deterioration of EBPR capacity. In SBBRs, comparing to SBR, the organic removal was occurred actively at the 1 st non-aeration period because of the active phosphorus release at this period. However, the variation of TOC removal according to the decrease of influent phosphorus concentration was not clearly shown both in SBR and SBBRs. In case of SBR losing EBPR capacity, the EBPR capacity was not recovered by the decrease of the influent phosphorus concentration from 7.5 mg/L to 0.9 mg/L. The nitrogen removal increased by the decrease of influent phosphorus concentration both in SBR and SBBRs.

Pilot Plant Study on Biological Nutrient Removal of Wastewater

  • Ahn, Sang-Jin;Kim, Geon-Heung;Ahn, Bok-Kyoun
    • Korean Journal of Hydrosciences
    • /
    • v.1
    • /
    • pp.99-106
    • /
    • 1990
  • An extensive biological nutrient removal pilot plant study of anoxic/anaerobic/ aerobic treatment process was conducted to eastblish an optimum operational mode using primary dffluent. Two operational modes, (1) Qr/Q was 3.0 and maintaining EMLSS of 3100 mg/L in which the best operational results were obtained from previous bench scale study using synthetic wastewater (2) Qr/Q was 0.5 and EMLSS of 2200 mg/L which was compatible with the main plant, were Compared and evaluated for removal of nitrogen and/or phosphorous under field conditions. The nitrogen removal increased with increasing recycle ratios, but the phosphorous removal revealed more consistent results with 83percent removal efficiency in the second mode compared with 80 percent in the first mode. Above all, the two modes equally showed good BOD and nitrogen removals by nitrification-denitrification processes. It was also observed that no scum formed in the pilot plant and the sludge exhibited excellent settling characteristic all the time. The modified biological nutrient removal train can be adopted to the main plant without any major changes of their operational modes.

  • PDF

Effect of ammonium nitrogen in anaerobic biofilter using live-stock-wastewater (축산폐수의 혐기성 고정법에 있어서 암모니아성 질소의 영향)

  • Eom, Tae-Kyu;Lim, Jung-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.43-53
    • /
    • 1997
  • In this research, the synthetic livestock wastewater was prepared to study the characteristics of organic matter removal, the change of VFA production, and the amount of gas production with respect to the change of ammonium nitrogen concentration in the waste using anaerobic fixed bed process, which is an anaerobic biofilm process. The HRT and operation temperature were 1 day and $35{\pm}1^{\circ}C$, respectively. Also, the characteristics of organic matter removal and the inhibitory effect on microorganism in the anaerobic process were studied on the organic loading and ammonium nitrogen concentration. The results obtained were as follows: For COD loading of $10kg/m^3$-day and five levels of ammonium nitrogen concentration ranging from 1,000 to 5,000 mg/L, organic removal efficiencies were about 81, 74, 67, 58, and 51%, and gas productions were 3,860, 3,520, 3,240, 3,020, and 2,790 ml/l-day, respectively. Average methane contents in the gas produced on COD loading of $10kg/m^3$-day was about 76%. Throughout the whole period of experiment, remaining VFA (as COD base) in the effluent was over 90% of remaining COD. This result indicated the inhibitory effect of high concentration of ammonium nitrogen through the facts that accumulated VFA was almost COD and organic removal efficiency decreased also with the increase of ammonium nitrogen. Especially, that implys which high concentration of ammonium nitrogen not only inhibits methane forming bacteria, but also acid forming bacteria.

  • PDF

Removal of Suspended Solids and Nitrification by Floating Bead Filter in Recirculating Aquaculture System (Floating Bead Filter에 의한 순환여과식 양식장의 부유고형물 제거와 질산화)

  • KIM Byong Jin;KIM Sung Koo;SUH Kuen Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-169
    • /
    • 2003
  • The floating bead filter was tested for treatment of aquacultural water in a pilot-scale recirculating aquaculture system. Performance of floating bead filter on the removal of total suspended solids (TSS) and the treatment of nitrogen sourer such as total ammonia nitrogen (TAN), nitrite nitrogen and nitrate nitrogen were evaluated. The system was stocked with Nile tilapia at an initial rearing densities of $5\%\;and\;7\%$ over 30 days. The average TSS removal rates were $43.0\;g/m^2{\cdot}day\;and\;39.5\;g/m^2{\cdot}day$ for rearing density of $5\%\;and\;7\%$, respectively. As rearing density increased from $5\%\;to\;7\%$. the TAN removal efficiency decreased from $22.0\%\;to\;17.7\%$. At the rearing densities of $5\%\;and\;7\%$, the average TAN removal rates and removal efficiencies were $38.8\;g/m^2{\cdot}day,\;15.6\%\;and\;37.8\;g/m^2{\cdot}day.\;17.7\%,$ respectively. The average TAN removal rate was $37.8-38.8\;g/m^3{\cdot}day.$ The oxygen consumption by floating bead filter was higher than theoretical oxygen consumption rate by nitrification.

Determination optimal ratio of ammonium to nitrite in application of the ANAMMOX process in the mainstream (Mainstream ANAMMOX 공정 적용시 암모니아성 질소 대비 아질산성 질소 비율 도출 연구)

  • Lee, Dawon;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2021
  • As the concentration of nitrogen in the sewage flowing into the sewage treatment plant increases due to urbanization and industrialization, the degree of adverse effects such as eutrophication and toxicity to the aquatic ecosystem is also increasing. In order to treat sewage containing high concentration of nitrogen, various studies on the biological nitrogen removal process are being conducted. Existing biological nitrogen removal processes require significant costs for supplying oxygen and supplementing external carbon sources. In this respect, as a high-level nitrogen removal process with economic improvement is required, an anaerobic ammonium oxidation process (ANAMMOX), which is more efficient and economical than the existing nitrification and denitrification processes, has been proposed. The purpose of this study is to confirm the stability of the ANAMMOX process in the water treatment process and to derive the ratio of ammonia nitrogen (NH4+) to nitrite nitrogen (NO2-) for the implementation of the mainstream ANAMMOX process. A laboratory-scale Mainstream ANAMMOX reactor was operated by applying the ratio calculated based on the substrate ratio suggested in the previous study. In the initial range, the removal efficiency of NH4+ was 58~86%, and the average removal efficiency was 70%. In the advanced range, the removal efficiency of NH4+ was 94~99%, and the average removal efficiency was 95%. As a result of the study, as the NH4+/NO2- ratio increased, the stability of the mainstream ANAMMOX process was secured, and it was confirmed that the NH4+ removal efficiency and the total nitrogen (TN) removal efficiency increased. As a result, the results of this study are expected to be used as basic data in the application of the ANAMMOX process in the mainstream.

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.

Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide (천연 Zeolite와 산화철을 이용한 폐수 중 질소 및 인의 처리)

  • Weon, Seung-Yeon;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • Removal of nutrients from domestic sewage or industrial wastewater is needed to protect surface waters from eutrophication. This research was carried out to remove the nitrogen (N) and phosphorus (P) from the wastewater using the iron oxide obtained from the steel industry and the natural zeolite, respectively. This research was conducted in both batch and continuous systems. The removal efficiency of the nutrients was evaluated in the batch system using the varying concentrations of zeolite and iron oxide added. The removal efficiency of N was 60% at the 8g of zeolite added. In the same condition, the removal efficiencies of N were 76% and 82% at 12g and 16g of zeolite added, respectively. Removal efficiency of P was 80% as 8g of iron oxide was added. The removal efficiency of P was correspondingly increased as the concentration of iron oxide was increased. Continuous column system was also used to evaluate the removal efficiency of N and P by the addition of zeolite and ferric oxide, respectively. Removal efficiencies of N were compared in the mixed packing, two stage, and four stage columns, respectively. The removal efficiencies (80%) of N in the separate packed columns (two and four stages) were higher than the mixed packing column (400%) after 90 hr. Whereas, the removal efficiencies of P were similar to each other in the three columns.

A Study on the Removal of Nitrogen and Phosphorus by Operation Mode for Livestock Wastewater Treatment Post-process Using SBR (축산폐수의 후처리공정으로서 SBR 적용시 운전인자에 따른 질소와 인의 제거특성에 관한 연구)

  • Choi, Gun-Youl;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.214-219
    • /
    • 2009
  • This study examined the removal efficiency of the nitrogen and phosphorus in order to compensate for the combined process of ATAD(Autothermal Thermophilic Aaerobic Digestion) and EGSB(Expended Granular Sludge Bed), which are treatment methods for livestock wastewater, by introducing SBR(Sequencing Batch Reactor) as post-treatment process. The analysis on the treatment efficiency of each operation mode showed that, in the case of T-N, the treatment efficiency were 67.1% and 74.2% for Run-1 and Run-2, respectively, and in the case of T-P, the values were 71.2 and 74.1, respectively, which are indicating that the treatment efficacy is higher in the condition of Run-1, in which the time period of Anoxic and Aerobic segments were increased. In addition, the result of analyzing removal characteristics of nitrogen and phosphorus by Influx load showed that removal efficiency of nitrogen was better in the case of high influx load than in the case of low influx load. Regardless of Influx load, phosphorus showed constant influx concentration, so that removal efficiency of phosphorus was influenced littler by Influx load than that of nitrogen. This study also fed methanol as an external carbon source and performed experiment to induce denitrification under anoxic condition by using nitrate among nitrogen compounds of SBR reactor, and the results showed that intermittent feeding was more effective in Nitrogen Removal than composite feeding.