• Title/Summary/Keyword: Nitrogen Recycling

Search Result 269, Processing Time 0.026 seconds

Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community (여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.319-331
    • /
    • 2004
  • This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.

Evaluation of Composting Characteristics According to the Air Supply Change in Farm-Sized Swine Manure (농가규모 양돈분뇨 퇴비화시 공기공급량 변화에 따른 퇴비 특성 평가)

  • Lee, Sunghyoun;Jeong, Gwanghwa;Lee, Dongjun;Lee, Donghyeon;Jang, Yuna;Kwag, Junghoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.49-61
    • /
    • 2019
  • Swine manure has been recognized as a organic sources for composting and many research was conducted to efficiently utilize and treat. This study was to evaluate a feasibility for producing swine manure compost under various treatment with mixture of swine manure and saw dust. Treatments were designed as follows; non aerated composting pile(REF), aerated composting pile of $100L/m^3$(EXP1), and aerated composting pile of $150L/m^3$(EXP2). The total days of fermentation were 28 days and each samples were collected at every 7 days from starting of composting. Temperature sensors were installed under 30~40cm from the surface of composting pile. Inner temperature in composting piles of EXP1 and EXP2 was rapidly increased to $67{\sim}75^{\circ}C$ within 1~2 days. The elevated temperatures found during the thermophilic phase are essential for rapid degradation of organic materials. While swine manure composted, moisture content, total nitrogen, EC of EXP1, EXP2 in sample at 28 days were lower than those of REF. But, pH and organic matter of EXP1, EXP2 in sample at 28 days were higher than those of REF. After finishing fermentation experiment, maturity was evaluated with germination test. Calculated germination index(GI) at REF, EXP1 and EXP2 were 23.49, 68.50 and 51.81, respectively. The values of germination index were higher at EXP1 and EXP2 which is aerated composting piles than REF which is non aerated composting pile. According to the results, composting process by aerated static pile compost had significant effect on the reduction of required period for composting. Supplying adequate amount of air to compost swine manure will greatly reduce composting period.

Influences of Major Nutrients in Surface Water, Soil and Growth Responses to Application of Supplemental Activated Biochar Pellet Fertilizers in Rice (Oryza sativa L.) Cultivation (벼 재배 시 활성 바이오차 팰렛 비료 시용에 따른 논 표면수와 토양의 주요 양분 함량 및 벼 생육에 미치는 영향)

  • Lee, SangBeom;Park, DoGyun;Jeong, ChangYoon;Nam, JooHee;Kim, MinJeong;Nam, HongShik;Shim, ChangKi;Hong, SeungGil;Shin, JoungDu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.17-28
    • /
    • 2022
  • The application of supplemental activated biochar pellet fertilizers (ABPFs) was evaluated by investigating key factors such as changes of surface paddy water and soil chemical properties and rice growth responses during the growing season. The treatments consisted of control, activated rice hull biochar pellet (ARHBP-40%), and activated palm biochar pellet (APBP-40%) applications. It was shown that the lowest NH4+-N and PO4--P concentrations were observed in surface paddy water to the ARHBP-40%, while the NH4+-N concentration in the control was abruptly decreased until 30 days after transplant in the soil. However, the lowest NH4+-N concentration in the blended biochar application was 9.18 mg L-1 at 1 day of transplant, but its ABPFs application was observed to be less than 1 mg L-1 at 56 days after transplant. The lowest PO4--P concentration in paddy water treated ARHBP-40% ranged from 0.06 mg L-1 to 0.08 mg L-1 until 30 days after transplant among the treatments. For the paddy soil, the NH4+-N concentration in the control was abruptly decreased from 177.7 mg kg-1 to 49.4 mg kg-1, while NO3--N concentration was highest, 13.2 mg kg-1 in 14 days after transplant. The P2O5 concentrations in the soils increased from rice transplants until the harvesting period regardless of the treatments. The highest K2O concentration was 252.8 mg kg-1 in the APBP-40% at 84 days after transplant. For the rice growth responses, plant height in the control was relatively high compared to others, but grain yield was not significantly different between the control and ARHBP-40%. The application of ARHBP-40% can minimize nitrogen and phosphorous application rates into the agro-ecosystem.

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses (느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.73-82
    • /
    • 2023
  • This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

Effects of Sowing Mixed Legume Forage and Applying Cattle Manure on the Productivity, Feed Values and Organic Hanwoo Feeding Capacity of Whole Crop Barley (청보리 재배 시 콩과 사료작물의 혼파와 우분의 시용이 생산성, 사료가치 및 유기한우 사육능력에 미치는 영향)

  • Jo, Ik Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.254-261
    • /
    • 2014
  • This study was to assess the effect of sowing mixed legume forage and applying cattle manure on the productivity and feed value of whole-crop barley (WCB) as a representative of winter crops and to estimate feeding capacity of Korean native cattle (Hanwoo) per unit area by defining optimal application level of cattle manure for more fertile soil and manure recycling for the purpose of reduced environmental pollution and efficient production of organic forage contributable to production of organic animal products. Sowing mixed legume forage significantly (p<0.05) increased yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) for WCB compared to WCB alone sowing, but there was no difference between mixed sowing treatments. The yields of DM, CP and TDN were significantly (p<0.05) highest in 100~150 kg N/hg. The CP and acid detergent fiber (ADF) contents were highest in mixed sowing with hairy vetch, followed by sowing mixed forage pea and WCB alone (p<0.05). There were no differences in CP and neutral detergent fiber (NDF) contents among cattle manure application levels. As nitrogen application level increased, ADF content increased (p<0.05), but TDN content decreased (p<0.05). Feeding capacity of organic Hanwoo (head/ha) weighing 450 kg of body weight with 400 g of daily gain significantly (p<0.05) increased due to mixed sowing with legume forage, and with increasing application levels of fermented cattle manure, feeding capacity significantly (p<0.05) increased. The results indicate that mixed-sowing of WCB and legume forage not only cut nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity, and feeding capacity. This would be contributable to diversity of forage resources as well as production of organic animal product by creating low cost and high quality of forage.

Effects of Sowing Mixed Legume Forage and Applying Cattle Manure on the Productivity and Organic Hanwoo Feeding Capacity of Whole Crop Wheat (콩과 사료작물의 혼파와 우분의 시용이 총체 밀의 생산성과 유기한우 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.359-372
    • /
    • 2015
  • This study was to assess the effects of sowing mixed legume forage and applying fermented cattle manure on the productivity and feed value of whole crop wheat (WCW) as a representative of winter crops and also to estimate feeding capacity of Korean native cattle (Hanwoo) per unit area by defining optimal application levels of cattle manure for more fertile soil and manure recycling for the purpose of reduced environmental pollution and efficient production of organic forage contributable to production of organic animal products. Sowing mixed legume forage significantly (p<0.05) increased yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) for WCW compared to WCW alone sowing, but there were no differences between mixed sowing treatments. The yields of DM, CP and TDN were significantly (p<0.05) higher in 100~150 kg N/ha. The CP and acid detergent fiber (ADF) contents were highest in mixed sowing with hairy vetch, followed by sowing mixed forage pea and WCW alone (p<0.05). There were no differences in CP among cattle manure application levels. As nitrogen application level increased, ADF content increased (p<0.05), but TDN content decreased (p<0.05). Feeding capacity of organic Hanwoo (head/ha) weighing 450 kg of body weight with 400 g of daily gain significantly (p<0.05) increased due to mixed sowing with legume forage, and with increasing application levels of fermented cattle manure, feeding capacity significantly (p<0.05) increased. The results indicated that mixed-sowing of WCW and legume forage not only reduced nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity, and feeding capacity. This would be contributable to diversity of forage resources as well as production of organic animal product by creating low cost and high quality of forage.

Controlling of Molecular Weight and Degree of Deacetylation of Chitosan and Its Characteristics in Film Formation (키토산 분자량과 탈아세틸화도 조절 및 이에 따른 필름 특성)

  • Hwang, Kwon-T.;Park, Hyun-J.;Jung, Soon-T.;Ham, Kyung-S.;Yoo, Yong-K.;Cho, Gun-S.
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.47-55
    • /
    • 1999
  • Applications of chitosan are related to molecular weight and degree of deacetylation(DOD) of chitosan completely. The molecular weight and DOD were greatly affected by the concentration of solution time and temperature. The degree of demineralization was not significantly different at $50^{\circ}C\;and\;70^{\circ}C$ after 30 minutes. Deproteinization decreased as process time increased. The nitrogen content was reached to 6.92% after 90 minute at $80^{\circ}C$, which is similar to theoretical nitrogen content of chitin. The DOD was 82.84% after 2 hours reaction and increased as the reaction time increased in the process. Viscosity and molecular weight are increased as recycling number of concentrated NaOH solution increased. Chemical, biological and physical properties of chitosan depend on the DOD and molecular size of the molecule. Tensile strength of the films from acetic acid solutions was between $28.9{\sim}33.6$ MPa and was generally higher than that of the films from lactic acid. Elongation of the films from lactic acid was between $97.0{\sim}109.7%$ and was generally higher than that of the films from the acetic acid. Water vapor permeability of the films prepared from lcetic acid solutions was between $1.9{\sim}2.3ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and was generally higher than that of the films from the acetic acid.

  • PDF

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Control of Mg and P Ion Concentration as a Precondition to Use N, K and Ca Ion Sensors in Closed Hydroponics (N, K, Ca의 한정된 이온센서 이용을 전제로 한 순환식 수경재배에서 P, Mg의 조절 방법)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Rhee, Han Cheol;Lee, Seong Chan;Lee, Jung-Sup;Kang, Nam Jun;Kim, Hak Jin;Jung, Dae Hyun
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.871-877
    • /
    • 2016
  • Recycling nutrient solutions in closed hydroponic production systems is usually accompanied by an imbalance of nutrient solutions when concentration is controlled according to electrical conductivity (EC) levels. This study investigated whether it was possible to automatically control the concentrations of five essential elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) using only N, K and Ca ion sensors. N, P, K, Ca, and Mg uptake was measured in the nutrient solution, and relationships between absorbed ions were analyzed through twice-repeated experiments in lettuce. Results confirmed that the pattern of $PO_4$ ion uptake was similar that of N, and the pattern of Mg ion uptake was similar that of Ca. $PO_4$ ion uptake was most highly correlated with N, and Mg was most highly correlated with Ca. Regression coefficients of N and $PO_4$ were significantly different at 1.04 and 0.55, respectively, but were similar between Ca and Mg at 0.35 and 0.40, respectively. Additional experiments were conducted to measure nutrient uptake in pak choi and rose plants, both to confirm the results from the first experiment in lettuce, and to assess possible application to other crops. Coefficients of determination both for N and $PO_4$, and Ca and Mg were considerably high ($R^2=0.86$) in cultured pak choi, and similar results were observed in cultured rose ($R^2=0.87$ and 0.73, respectively). Regression coefficients for cultured pak choi were 0.56 and 0.24, respectively, and for rose were 0.51 and 0.16, respectively. Although the results obtained for N and $PO_4$ were not consistent between the lettuce experiments, N and $PO_4$ have similar regression coefficients for all crops. No common coefficient was found between Ca and Mg.