• Title/Summary/Keyword: Nitrogen Oxide

Search Result 687, Processing Time 0.027 seconds

Effects of Iksujisundan on Renal Function, Peroxynitrite Scavenging Activity and Polyol Pathway in Streptozotocin-induced Diabetic Rats (익수지선단(益壽地仙丹)이 Streptozotocin으로 유발된 당뇨병 흰쥐의 신기능, 활성산소, 활성질소 및 Polyol Pathway에 미치는 영향)

  • Jeon, Chang-Min;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.237-248
    • /
    • 2007
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Iksujisundan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Iksujisundan on renal function, peroxynitrite(ONOO-) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. Methods : The crushed Iksujisundan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 87.8g. Iksujisundan extract was orally administreted at 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin(60mg/kg). The effects of Iksujisundan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical(${\cdot}$O2-), nitric oxide(NO) and ONOO-, and also the enzyme activities involved in the polyol pathway. Results : The effects of Iksujisundan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and indulin levels, creatinine and BUN levels, total cholesterol and triglyceride lavels, and HDL-cholesterol levels were all shown to be good enough to prevent and cure the diabetes and its complications. Iksujisundan inhibited the generation of ${\cdot}$O2-,NO and ONOO- in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats were reversed toward natural activities. Conclusions : Iksujisundan might inhibit the development of diabetes and its complications by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover kidney function.

  • PDF

Analysis of statistical models on temperature at the Suwon city in Korea (수원시 기온의 통계적 모형 연구)

  • Lee, Hoonja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1409-1416
    • /
    • 2015
  • The change of temperature influences on the various aspect, especially human health, plant and animal's growth, economics, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly temperature data at the Suwon monitoring site in Korea. In the ARE model, five meteorological variables, four greenhouse gas variables and five pollution variables are used as the explanatory variables for the temperature data set. The five meteorological variables are wind speed, rainfall, radiation, amount of cloud, and relative humidity. The four greenhouse gas variables are carbon dioxide ($CO_2$), methane ($CH_4$), nitrous oxide ($N_2O$), and chlorofluorocarbon ($CFC_{11}$). And the five air pollution explanatory variables are particulate matter ($PM_{10}$), sulfur dioxide ($SO_2$), nitrogen dioxide ($NO_2$), ozone ($O_3$), and carbon monoxide (CO). Among five meteorological variables, radiation, amount of cloud, and wind speed are more influence on the temperature. The radiation influences during spring, summer and fall, whereas wind speed influences for the winter time. Also, among four greenhouse gas variables and five pollution variables, chlorofluorocarbon, methane, and ozone are more influence on the temperature. The monthly ARE model explained about 43-69% for describing the temperature.

A Study on Characteristics of Exhaust Gas Emissions of Water-Bunker Oil Mixed by Homogenizer (균질기에 의해 혼합된 물-벙커유의 배기가스 배출 특성에 관한 연구)

  • Choi, Jung-Sik;Han, Sang-Goo;Choi, Jae-Hyuk;Park, Sang-Kyun;Park, Ro-Seong;Kim, Dae-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.518-524
    • /
    • 2013
  • In this study, we conducted a study on characteristics of exhaust gas emissions from boiler when water-bunker oil mixed by homogenizer was burned in boiler. The results showed that NOx concentration and CO concentration of the homogenized bunker oil was decreased by 19% and 54% compared to pure bunker oil pretreatment was not being performed. And, in the case of water-bunker A oil, the NOx concentration was decreased with increasing water mixing ratio in bunker A oil. In particular, the NOx concentration in exhaust gas of 20 %water-80 %bunker A oil decrease by 45 % compared with pure bunker-A. However, the CO concentration in exhaust gas of 20 %water-80 %bunker A oil shows irregular changes. This means that the mixing of water more than a certain amount can cause a decrease in combustion performance. From this result, it can be found that critical mixing ratio of water in bunker A oil for normal combustion is 15% in this study. Deposition amount of soot that is collected in the vicinity of the chimney was decreased with increasing water mixing ratio.

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.

Antioxidant and Anti-Inflammatory Effects of Kamisipjeondaebotang in RAW 264.7 Cells (가미십전대보탕의 RAW 264.7 세포에서 항산화 및 항염증 효과)

  • Myung, Jeong-Ho;Lee, Myung-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1271-1277
    • /
    • 2017
  • As Kamisipjeondaebotang (KSD) extract is an herbal ingredient, safety is very important due to possible cell poisoning or heavy metal toxicity to organs when administered to humans or animals. Accordingly, this study examined the antioxidant and anti-inflammatory effects of KSD extract to confirm its medicinal safety by using RAW 264.7 cells after heavy metal screening, functional index test of the liver and kidney, and cell survival rate test. Heavy metals were not found in KSD extracts or were less than standard amounts. Liver function indices such as aspartate aminotransferase and alanine aminotransferase revealed low values and kidney function indices such as creatinine and blood urea nitrogen were not significantly different from the normal group. This proved the safety to the human. RAW 264.7 cells showed no poisoning compared to the control group in terms of survival rate. Regarding the antioxidant effect of KSD extract, 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and 2,2'-azino-bis(3-ethylbenzothiazo-line-6-sulphonic acid) radical scavenging activity increased at concentrations over $10{\mu}g/mL$. The anti-inflammatory effect of KSD extract significantly decreased based on the amount of nitric oxide at concentrations of 10 and $100{\mu}g/mL$ compared to the control group. Expression of interleukin (IL)-$1{\beta}$ and IL-6 decreased in a concentration-dependent manner. There was no significant difference in tumor necrosis factor-${\alpha}$ level. Based on the results, KSD can be regarded as a safe antioxidant with anti-inflammatory effects for fracture treatment.

Development and Assessment of Harmful Gases Reducing Molded Fuel Using Torrefied Wood (반탄화목재를 이용한 유해가스 저감형 성형연료의 개발 및 평가)

  • LEE, Chang-Goo;EOM, Chang-Deuk;KIM, Min-Ji;KANG, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.732-744
    • /
    • 2020
  • In this study, a torrefaction of Quercus serrata to manufacture a molded charcoal was performed, investigated material properties, fuel characteristics, and performed a quantitative analysis of hazardous gases which occur during a combustion process. In addition, a molded charcoal in market was selected as a control group, and a comparative analysis was performed. As a result, the higher heating value (HHV) of the torrefied specimen was about 14% higher than that of molded charcoal, and its ash content was about 51 times lower. Moreover, after performing a quantitative assessment of hazardous gases (carbon monoxide, nitrogen oxide, and sulfur dioxide) which were produced when each specimen was combusted for 900 seconds in an enclosed chamber, it was confirmed that the maximum value of generated amount of carbon monoxide on the torrefied specimen was about 50 times lower than that of the existing molded charcoal. Therefore, it was shown that the torrefied specimen produced in this study had a higher heating value than the molded charcoal in the market, and a very low amount of carbon monoxide generated during the combustion process.

Effects of Gamigukihwandong-hwan on Renal Function, Oxidative Stress and Polyol Pathway in Diabetic Nephropathy Rats (Streptozotocin으로 유발된 흰쥐의 당뇨병성 신증에서 가미구기환동환(加味枸杞還童丸)이 Oxidative Stress 및 Polyol Pathway에 미치는 영향)

  • Jeong, Hyung-Cheol;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.671-678
    • /
    • 2007
  • Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Gamigukihwandong-hwan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Gamigukihwandong-hwan on renal function, peroxynitrite (ONOO$^-$) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. The crushed Gamigukihwandong-hwan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 74.95 g. Gamigukihwandong-hwan extract was oral-administered 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin (60 mg/kg). The effects of Gamigukihwandong-hwan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical (${\cdot}O_2^-$), nitric oxide (NO) and ONOO$^-$, and also the enzyme activities involved in polyol pathway. The Effects of Gamigukihwandong-hwan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin levels, creatinine and BUN levels, total cholesterol and triglyceride levels, and HDL-cholesterol levels were all shown to be good enough to cure and prevent the diabetes and its complications. Gamigukihwandong-hwan inhibited the generation of ${\cdot}O_2^-$, NO and ONOO$^-$ in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats, whereas the ones in the Gamigukihwandong-hwan administered group among the streptozotocin-induced diabetic rats were reversed toward the natural activities. Gamigukihwandong-hwan might inhibit the development of diabetic nephropathy by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover the function of kidney.

Rapid Processing of the Fish Sauce and Its Quality Evaluation (속성어간장 제조 및 품질 평가)

  • Shin, Suk-U;Kwon, Mi-Ae;Jang, Mi-Sun;Kang, Tae-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.666-672
    • /
    • 2002
  • Changes in chemical characteristic, microflora, and sensory evaluation of fish sauce extracted at an interval of one week from fermented solution were investigated. pH was reduced from 6.0 to 4.5, and trimethylamine oxide from 132.5 to 87.2 mg/100g during fermenting periods. Trimethylamine increased from 5.6 to 50.2 mg/100g, and volatile basic nitrogen from 48.3 to 232.5 mg/100g. Bacterial flora isolated from the fish sauce were 70% Lactobacillus sp. and 13% Bacillus sp. Among the free amino acids, alanine, glutamic acid, valine, and methionine contents constitute 40% of the total free amino acids. Major non-volatile organic acid of the fish sauce was lactic acid (76%). Sensory evaluation results of the fish sauce were higher than the traditional soybean sauce after 28 days of fermentation.

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

Effect of Core Morphology on the Decomposition of CCI₄ over the Surface of Core/Shell Structured Fe₂O₃/MgO Composite Metal Oxides

  • 김해진;강진;박동곤;권호진;Kenneth J. Klabunde
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.831-840
    • /
    • 1997
  • Core/shell structured composite metal oxides of Fe2O3/MgO were prepared by thermal decomposition of Fe(acac)3 adsorbed on the surface of MgO cores. The morphology of the composites conformed to that of the MgO used as the cores. Broad powder X-ray diffraction peaks shifted toward larger d, large BET surface area (∼350 m2/g), and the size of crystalline domains in nano range (4 nm), all corroborate to the nanocrystallinity of the Fe2O3/MgO composite which was prepared by using nanocrystalline MgO as the core. By use of microcrystalline MgO as the core, microcrystalline Fe2O3/MgO composite was prepared, and it had small BET surface area of less than 35 m2/g. AFM measurements on nanocrystalline Fe2O3/MgO showed a collection of spherical aggregates (∼80 nm dia) with a very rough surface. On the contrary, microcrystalline Fe2O3/MgO was a collection of plate-like flat crystallites with a smooth surface. The nitrogen adsorption-desorption behavior indicated that microcrystalline Fe2O3/MgO was nonporous, whereas nanocrystalline Fe2O3/MgO was mesoporous. Bimodal distribution of the pore size became unimodal as the layer of Fe2O3 was applied to nanocrystalline MgO. The macropores in a wide distribution which the nanocrystalline MgO had were absent in the nanocrystalline Fe2O3/MgO. The decomposition of CCl4 was largily enhanced by the overlayer of Fe2O3 on nanocrystalline MgO making the reaction between nanocrystalline Fe2O3/MgO and CCl4 be nearly stoichiometric. The reaction products were environmentally benign MgCl2 and CO2. Such an enhancement was not attainable with the microcrystalline samples. Even for the nanocrystalline MgO, the enhancement was not attained, if not with the Fe2O3 layer. Without the layer of Fe2O3, it was observed that the nanocrystalline domain of the MgO transformed into microcrystalline one as the decomposition of CCl4 proceeded on its surface. It appeared that the layer of Fe2O3 on the particles of nanocrystalline Fe2O3/MgO blocked the transformation of the nanocrystalline domain into microcrystalline one. Therefore, in order to attain stoichiometric reaction between CCl4 and Fe2O3/MgO core/shell structured composite metal oxide, the morphology of the core MgO has to be nanocrystalline, and also the nanocrystalline domains has to be sustained until the core was exhausted into MgCl2.