• Title/Summary/Keyword: Nitrogen Oxide

Search Result 687, Processing Time 0.024 seconds

Zinc Oxide Wire-Like Thin Films as Nitrogen Monoxide Gas Sensor

  • Hung, Nguyen Le;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.358-363
    • /
    • 2015
  • We present an excellent detection for nitrogen monoxide (NO) gas using polycrystalline ZnO wire-like films synthesized via a simple method combined with sputtering of Zn metallic films and subsequent thermal oxidation of the sputtered Zn nanowire films in dry air. Structural and morphological characterization revealed that it would be possible to synthesize polycrystalline hexagonal wurtzite ZnO films of a wire-like nanostructure with widths of 100-150 nm and lengths of several microns by controlling the sputtering conditions. It was found from the gas sensing measurements that the ZnO wire-like thin film gas sensor showed a significantly high response, with a maximum value of 29.2 for 2 ppm NO at $200^{\circ}C$, as well as a reversible fast response to NO with a very low detection limit of 50 ppb. In addition, the ZnO wire-like thin film gas sensor also displayed an NO-selective sensing response for NO, $O_2$, $H_2$, $NH_3$, and CO gases. Our results illustrate that polycrystalline ZnO wire-like thin films are potential sensing materials for the fabrication of NO-sensitive high-performance gas sensors.

Effect of Fuel Injection Timing on Nitrous Oxide Emission from Diesel Engine (디젤엔진에서 연료 분사시기가 아산화질소에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2014
  • The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.

Electrical and Reliability properties of MOS capacitors with $N_{2}O$ oxides ($N_{2}O$ 산화막을 갖는 MOS 캐패시터의 전기적 및 신뢰성 특성)

  • 이상돈;노재성;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.117-127
    • /
    • 1994
  • In this paper, electrical and reliability properties of N$_2$O oxides, grown at the temperature of 95$0^{\circ}C$ and 100$0^{\circ}C$ to 74$\AA$, and 82$\AA$. respectively, using NS12TO gas in a conventional furnace, have been compared with those of pure oxide grown at the temperature of 850 to 84$\AA$ using O$_2$ gas. Initial IS1gT-VS1gT characteristics of N$_2$O oxides were similar to those of pure oxide, and reliability properties of N$_2$O oxides, such as charge trapping, interface state density and leakage current at low electric field under F-N stress, were improved much better than those of pure oxide. But, with increasing capacitor area. TDDB characteristics of N$_2$O oxides were more degraded than those of pure oxide and this degradation of TDDB characteristics was more severe in 100$0^{\circ}C$ N$_2$Ooxide than in 95$0^{\circ}C$ N$_2$O oxide. The improvement of reliability properties excluding TDDB in N$_2$Ooxides was attributed to the hardness of the interface improved by nitrogen pile-up at the interface of Si/SiO$_2$, but on the other hand, the degradation of TDDB characteristics in N$_2$O oxides was obsered due to the increase of local thinning spots caused by excessive nitrogen at interface during the growth of N$_2$O oxides.

  • PDF

Nitrogen Budgets of Agriculture and Livestock in South Korea at 2010 (2010년도 대한민국 농업 및 축산업지역의 질소 유입 및 유출 수지)

  • Nam, Yock-Hyun;An, Sang-Woo;Jung, Myung-Sook;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.204-213
    • /
    • 2012
  • The objectives of this research were to estimate nitrogen budgets in agriculture and livestock in 2010, and to evaluate nitrous oxide ($N_2O$) emission by a local government. Input-output budgets for nitrogen were categorized into two sections including agriculture and livestock. Fertilizer, deposition, fixation, compost, irrigation, and feed were used as the nitrogen inputs while crop production, crop uptake, denitrification, volatilization, leaching, compost, and ocean disposal were used as the nitrogen outputs. Annual nitrogen input and output for agriculture and livestock were 1,148,848 N ton/yr and 610,380 N ton/yr respectively indicating the decrease of the nitrogen input and output, compared to our previous researches in 2005 and 2008. Total nitrogen input in 16 local government was estimated resulting that $N_2O$ emission was the highest for Jeonnam (2,574 ton/yr) and the lowest for Seoul (7 ton/yr).

Relation with Activity of Road Mobile Source and Roadside Nitrogen Oxide Concentration (도로이동오염원의 활동도와 도로변 질소산화물 농도의 관계)

  • Kim, Jin Sik;Choi, Yun Ju;Lee, Kyoung Bin;Kim, Shin Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.9-20
    • /
    • 2016
  • Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.

Reactive nitrogen metabolism: a novel frontier in plant nitrogen metabolism

  • Sakamoto, Atsushi;Takahashi, Misa;Morikawa, Hiromichi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.65-70
    • /
    • 2005
  • A growing body of evidence shows that nitric oxide $({\cdot}NO)$ and ${\cdot}NO-derived$ reactive nitrogen species (RNS) act as both plant physiological regulators and stressors. However, very little is known concerning metabolism of RNS in plant cells. In this paper, we explore a plant metabolic basis for RNS, with special emphasis on the possible relationship to nitrogen assimilation, and discuss the potential of the metabolic engineering for plant-biotechnological application.

  • PDF

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

Durability of Photocatalytic Cement after Nitric Oxide-Wet-Dry Cycling

  • Lee, Bo Yeon;Kurtis, Kimberly E.
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.359-368
    • /
    • 2014
  • Photocatalytic cement has been receiving attention due to its high oxidation power that reduces nitrogen oxide, thus contributing to a clean atmospheric environment. However, there has not yet been a thorough investigation on the effect of photocatalytic reactions on the durability of cementitious material, the parent material. In this study, photocatalytic cement samples were exposed to nitric oxide gas and UV along with cycles of wetting and drying to simulate environmental conditions. The surface of samples was characterized mechanically, chemically, and visually during the cycling. The results indicate that that the photocatalytic efficiency decreased with continued NO oxidation. The pits found from SEM indicated that chemical deterioration, such as acid attack or leaching, did occur. However, this was not confirmed by X-ray diffraction. The hardness was not affected, probably due to the formation of CSH as evidenced by the XRD pattern. In conclusion, it was found that photocatalysis could alter cementitious materials both chemically and mechanically, which could further affect long-term durability.