• 제목/요약/키워드: Nitrogen Oxide($NO_x$)

검색결과 68건 처리시간 0.034초

저녹스 버너 설치 시설의 질소산화물 저감 효율 산정 방법 (The Methods Calculating the Reduction Efficiency of Nitrogen Oxide for the Facilities Including the Low NOx Burners)

  • 이기용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.295-296
    • /
    • 2015
  • We presented the methods calculating the reduction efficiency of nitrogen oxide for the low $NO_x$ burner as the pollution prevention facilities. The standard $NO_x$ concentration was used on the emission factor of LNG, $3.7g/m^3$. The $NO_x$ reduction efficiency based on the $NO_x$ concentration was presented and the relationships between the $NO_x$ concentration and the emission factor or the specific heat emission factor were derived. These results could be accurately reflected on calculating the amount of the nitrogen oxide emissions. In addition, according to the arrangement of the low $NO_x$ burners the methods of applying their $NO_x$ reduction efficiency were proposed. The $NO_x$ reduction efficiency for the facilities consisting of the low $NO_x$ burners and the non-low $NO_x$ burners could be estimated with information about the reduction efficiency of each low $NO_x$ burners, the fuel consumption rate, and the heating value of fuel.

  • PDF

경유자동차에서 배출되는 NO2/NOX 비율 특성 (Experimental Study on the NO2/NOX Ratio from Exhaust of Diesel Vehicles by Chassis Dynamometer)

  • 김선문;김정화;정성운;성기재;김정수;김인구
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.220-224
    • /
    • 2017
  • Nitrogen dioxide ($NO_2$) is an important urban pollutant in Korea. Expecially, diesel vehicles are responsible for the most traffic rated nitrogen oxide ($NO_X$) emission, including nitric oxide (NO) and nitrogen dioxide ($NO_2$). Though nitrogen oxide ($NO_X$) emission from vehicle was applied a strict enforcement of emission standard, the specific $NO_2$ fraction in $NO_X$ ($NO_2/NO_X$) from various types of diesel vehicles was not understood. In order to investigate the fraction of $NO_2/NO_X$, the vehicle emission study was carried out at the facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Three different types of diesel vehicles(VAN, SUV, passenger) were tested on the NIER driving mode. The result of $NO_2/NO_X$ ratio was over 0.1 for all test vehicles and the highest $NO_2$ emission was observed at the van vehicle. The observation was showed that the emission trend of $NO_2/NO_X$ for passenger and SUV vehicles were inversely proportional. Also, as the emission standard has been strengthen, the emission rate of $NO_2$ has been decrease.

나노 공극소재로 코팅된 모헤어의 질소산화물(NOX) 및 황산화물(SOX) 제거 성능평가 (Nitrogen oxide (NOX) and Sulfur Oxide (SOX) Removal Capacities of Textile FabricsCoated with Nano-pore Materials)

  • 이재욱;양근혁;문주현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.157-158
    • /
    • 2020
  • The present study examined the effectiveness of textile fabrics coated with nano-pore materials on removing the nitrogen oxide (NOX) and sulfur oxide (SOX) in the atmospheric environment. The tested approach is favorable for absorbing NOX and SOX, even under the washing condition.

  • PDF

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

비휘발성 기억소자를 위한 NO/$N_2O$ 질화산화막과 재산화 질화산화막의 특성에 관한 연구 (Characteristics of the NO/$N_2O$ Nitrided Oxide and Reoxidized Nitrided Oxide for NVSM)

  • 이상은;서춘원;서광열
    • 한국진공학회지
    • /
    • 제10권3호
    • /
    • pp.328-334
    • /
    • 2001
  • 초박막 게이트 유전막 및 비휘발성 기억소자의 게이트 유전막으로 연구되고 있는 NO/$N_2$O 질화산화막 및 재산화질화산화막의 특성을 D-SIMS(dynamic secondary ion mass spectrometry), ToF-SIMS(time-of-flight secondary ion mass spectrometry), XPS(x-ray Photoelectron spectroscopy)으로 조사하였다. 시료는 초기산화막 공정후에 NO 및 $N_2$O 열처리를 수행하였으며, 다시 재산화공정을 통하여 질화산화막내 질소의 재분포를 형성토록 하였다. D-SIMS 분석결과 질소의 중심은 초기산화막 계면에 존재하며 열처리 공정에서 NO에 비해서 $N_2$O의 경우 질소의 분포는 넓게 나타났다. 질화산화막내 존재하는 질소의 상태를 조사하기 위하여 ToF-SIMS 및 XPS 분석을 수행한 결과 SiON, $Si_2$NO의 결합이 주도적이며 D-SIMS에서 조사된 질소의 중심은 SiON 결합에 기인한 것으로 예상된다. 재산화막/실리콘 계면근처에 존재하는 질소는 $Si_2$NO 결합형태로 나타나며 이는 ToF-SIMS로 얻은 SiN 및 $Si_2$NO 결합종의 분포와 일치하였다.

  • PDF

음식물류 폐수 소각처리에 따른 질소산화물 저감 및 소각설비의 안정성 평가에 관한 연구 (A Study on Reduction of Nitrogen Oxide (NOx) and Stability of Incineration Facility by the Food Wastewater Incineration)

  • 황승민;정진도;송장헌
    • 대한환경공학회지
    • /
    • 제31권10호
    • /
    • pp.901-908
    • /
    • 2009
  • 음식물류 폐수를 생활 폐기물 소각로에 직접 분사하여 소각처리 하는 방안에 대하여 검토하였다. 소각설비는 연속 스토카식 실증플랜트를 이용하였다. 그 결과 암모니아성 질소($NH_3$-N)가 다량 함유된 음식물류 폐수를 분사 소각함으로써 질소산화물($NO_x$) 농도저감과 동시에 질소산화물($NO_x$) 저감을 위해 선택적 비촉매 환원장치(selective non-catalytic reduction ; SNCR)에서 사용되는 암모니아($NH_3$)의 사용량을 절감하는 효과를 가져왔다. 또한, 음식물류 폐수를 분사하여 2차 연소실 출구온도를 적정온도인 870~$950^{\circ}C$로 유지하여 소각량을 최대화하는 한편 폐열회수 보일러의 수관외벽 막힘현상 개선을 통한 로의 안정성 확보 및 연속운영기간의 연장을 실현하였다. 질소산화물($NO_x$), 황산화물($SO_x$) 및 다이옥신 등 대기오염물질 26개 항목에 대하여 측정을 실시한 결과 모두 배출허용 기준치 이하의 값을 나타내었다.

도로이동오염원의 활동도와 도로변 질소산화물 농도의 관계 (Relation with Activity of Road Mobile Source and Roadside Nitrogen Oxide Concentration)

  • 김진식;최윤주;이경빈;김신도
    • 한국대기환경학회지
    • /
    • 제32권1호
    • /
    • pp.9-20
    • /
    • 2016
  • Ozone has been a problem in big cities. That is secondary air pollutant produced by nitrogen oxide and VOCs in the atmosphere. In order to solve this, the first to be the analysis of the $NO_x$ and VOCs. The main source of nitrogen oxide is the road mobile. Industrial sources in Seoul are particularly low, and mobile traffics on roads are large, so 45% of total $NO_x$ are estimated that road mobile emissions in Seoul. Thus, it is necessary to clarify the relation with the activity of road mobile source and $NO_x$ concentration. In this study, we analyzed the 4 locations with roadside automatic monitoring systems in their center. The V.K.T. calculating areas are set in circles with 50 meter spacing, 50 meter to 500 meter from their center. We assumed the total V.K.T. in the set radius affect the $NO_x$ concentration in the center. We used the hourly $NO_x$ concentrations data for the 4 observation points in July for the interference of the other sources are minimized. We used the intersection traffic survey data of all direction for construction of the V.K.T. data, the mobile activities on the roads. ArcGIS application was used for calculating the length of roads in the set radius. The V.K.T. data are multiplied by segment traffic volume and length of roads. As a result, the $NO_x$ concentration can be expressed as linear function formula for V.K.T. with high predictive power. Moreover we separated background concentration and concentrations due to road mobile source. These results can be used for forecasting the effect of traffic demand management plan.

피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성 (Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media)

  • 강영현;김덕우;강선홍;권필주;김달우;황필기;심상보
    • 한국대기환경학회지
    • /
    • 제26권3호
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사 (The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames)

  • 장경;장봉춘;이기용
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF

Synthesis and Characterization of Zinc Oxide Nanorods for Nitrogen Dioxide Gas Detection

  • Park, Jong-Hyun;Kim, Hyojin
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.260-266
    • /
    • 2021
  • Synthesizing low-dimensional structures of oxide semiconductors is a promising approach to fabricate highly efficient gas sensors by means of possible enhancement in surface-to-volume ratios of their sensing materials. In this work, vertically aligned zinc oxide (ZnO) nanorods are successfully synthesized on a transparent glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal film. Structural and optical characterization by x-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy reveals the successful preparation of the ZnO nanorods array of the single hexagonal wurtzite crystalline phase. From gas sensing measurements for the nitrogen dioxide (NO2) gas, the vertically aligned ZnO nanorod array is observed to have a highly responsive sensitivity to NO2 gas at relatively low concentrations and operating temperatures, especially showing a high maximum sensitivity to NO2 at 250 ℃ and a low NO2 detection limit of 5 ppm in dry air. These results along with a facile fabrication process demonstrate that the ZnO nanorods synthesized on a transparent glass substrate are very promising for low-cost and high-performance NO2 gas sensors.