• Title/Summary/Keyword: Nitrogen Adsorption Analysis

Search Result 129, Processing Time 0.028 seconds

Effect of Preparation Method for Pd/C Catalysts on Pd Characterization and their Catalytic Activity (Pd/C 촉매 제조 방법에 따른 Pd 금속의 특성 및 촉매 활성)

  • Kim, Ji Sun;Hong, Seong-Soo;Kim, Jong-Hwa;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.575-580
    • /
    • 2015
  • Pd/C catalysts were prepared by various preparation methods such as ion exchange, impregnation and polyol method and also characterized by nitrogen adsorption-desorption isothermal, XRD, FE-TEM and CO-chemisorption. The activities of these catalysts were tested in the hydrogenation of cyclohexene to cyclohexane. Catalytic activities of Pd/C catalysts were found to be effected by the chosen preparation methods. Pd dispersions of each Pd/C catalysts prepared by ion exchange, impregnation and polyol method were 17.55, 13.82% and 1.35%, respectively, confirmed by CO-chemisorption analysis. These were also in good agreement with the FE-TEM results. The Pd/C catalyst prepared by ion exchange method exhibits good performance with the cyclohexene conversion rate of 71% for 15 min. These results indicate that Pd/C catalyst having higher dispersion and lower particle size is in favor of hydrogenation cyclohexene and also Pd dispersion increases with the increment of catalytic activity.

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.

Effect of Curvature Dependency of Surface Tension on the Result of Pore-Volume Distribution Analysis (동공부피 분포의 계산결과에 미치는 표면장력의 곡률 의존도 효과)

  • Cho Chang-Hyun;Ahn Woon-Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 1972
  • The significance of the curvature dependency correction of surface tension is studied in calculating the pore volume distribution of porous adsorbent from nitrogen adsorption isotherm. That is, Kelvin radii are calculated with curvature dependent surface tension values calculated by Chang et al, and then with these Kelvin radii, pore volume distributions of three porous adsorbents, silica alumina (steam deactivated), silica gel (Davidson 59), and silica gel (Mallinc-krodt Standard Luminescent), are calculated. The results are compared with those obtained by the previous method in which surface tension is taken as constant and also with the others. obtained by the modelless method proposed by Brunauer et al. The maximum point of the distribution curve shift to the larger pore radius, when the curvature dependency is considered. Furthermore, the relative pressure at which capillary condensation commences is by far the lower than that accepted previously. This effect becomes significant as the pore radius approaches to the micropore range.

  • PDF

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.

Design of Optimal Water Treatment Processes based on Required Water Quality for Utilization of the Saemanguem Lake Water (새만금 담수 활용을 위한 요구수질별 최적의 수처리 방안 연구)

  • Choi, Kyung-Sook;Lee, Kwang-Ya
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.169-178
    • /
    • 2012
  • This study was aimed at providing optimal water treatment processes based on various required water quality for utilization of the Saemangeum lake water as water supply alternatives to this area. Various water treatment methods were considered for investigation there characteristics, pollution removal rate, pros and cons in order to select appropriate water treatment processes satisfying the required water quality for different purposes. As results, the FDA system for SS, turbidity, BOD removals, UV treatment for coliform, BOD removals, FNR process for T-N, T-P removals, and ECRS process for desalination purpose were found to be better methods in senses of removal efficiency, operation and maintenance. Case studies were provided with cost analysis for field applications in the Saemangeum area.

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.

Water Quality Characteristics of the Major Tributaries in Yeongsan and Sumjin River Basin using Statistical Analysis (통계분석을 이용한 영산강·섬진강수계 주요 유입지천의 수질 특성)

  • Park, Jinhwan;Jung, Jaewoon;Kim, Daeyoung;Kim, Kapsoon;Han, Sungwook;Kim, Hyunook;Lim, Byungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.171-181
    • /
    • 2013
  • In this study, we report the water quality characteristics of pollutants for 4 major tributaries in the Yeongsan and Sumjin river basins using statistical analysis, such as regression equation and factor analysis. The flow rate and water qualtiy data collected from 4 sampling sites(Hwangryoung A, Jiseok A, Chooryeong A, Osu A) in the Yeonsan and Sumjin river basin during the past 3 years were analyzed for 11 parameters(flow rate, dissolved oxgen, pH, water temperature, electric conductivity, biochemical oxygen demand, chemical oxygen deman, total organic carbon, total nitorgen, total phosphorus, suspended solid). The results showed that the concentrations of BOD, COD, TOC, T-N, T-P in Hwangryoung A(HW) and Jiseok A(JS) of the Yeongsan river basin were decreased as the flow rate was increased. This means that rather than nonpoint soources, point sources affect water quality. In the cases of Chooryeong A(CR) and Osu A(OS) in the Sumjin river basin, howerever, nonpoint sources than point sources are an important factor that affects the water quality. Also, the factor analysis technique was employed to analyze principal component influencing on water quality. The results revealed that the first principal component in HW was correlated with EC, DO, T-N, water temperature. This "nitrogen influx according to seasonal pattern" factor may be interpreted. In JS, the first principal component was correlated with BOD, COD, TOC and is likely to represent "organic matter" processes. In CR and OS, BOD, COD, TOC, SS and T-P were significantly correlated and is considered as representing "Organic matter and adsorption of phosphorus on sediments influx". This study is expected to contribute to the effective pollution control/management of the surfac waters in the study sites.

Modelling of Nitrogen Oxidation in Aerated Biofilter Process with ASM3 (부상여재반응기에서 ASM3를 이용한 질산화 공정 모사)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2007
  • Process analysis with ASM3 (Activated Sludge Model3) was performed to offer basic data for the optimization of aerated biofilter (ABF) process design and operation. This study was focused on the simulation of the nitrification reaction in ABF which was a part of the advanced nutrient treatment process using bio-adsorption. The ABF process has been developed for the removal of suspended solids and nitrification reaction in sewage. A GPS-X (General Purpose Simualtor-X) was used for the sensitivity analysis and operation assessment. Sensitivity of ASM3 parameters on ABF was analysed and 4 major parameters ($Y_A$, $k_{sto}$, ${\mu}_A$, $K_{A,HN}$) were determined by dynamic simulation using 70 days data from pilot plant operation. The optimized values were 0.14 for $Y_A$, 3.5/d for $k_{sto}$, 2.7/d for ${\mu}_A$ and 1.1 mg/L for $K_{A,HN}$, respectively. Simulation with optimized parameter values were conducted and TN, $NH_4{^+}-N$ and $NO_3{^-}-N$ concentrations were estimated and compared with measured data at the range of 10 min to 4 hrs of hydraulic retention time (HRT). The simulated results showed that optimized parameter values could represent the characteristics of ABF process. Especially, the ABF showed relatively high nitrification rate (60%) under very short HRT of 10 min. As a consequence, the ABF was thought to be successfully used in the site which having high variation of influent loading rate.

  • PDF

Optimization of MOF-801 Synthesis Using Sequential Design of Experiments (순차적 실험계획법을 이용한 MOF-801 합성공정 최적화)

  • Lee, Min Hyung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.621-626
    • /
    • 2021
  • A sequential design of experiments was used to optimize MOF-801 synthesis process. For the initial screening, a general 2k factorial design was selected followed by the central composition design, one of the response surface methods. A 23 factorial design based on the molar ratio of fumaric acid, dimethylformamide (DMF), and formic acid was performed to select the more suitable response variable for the design of experimental method among the crystallinity and BET specific surface area of MOF-801. After performing 8 synthesis experiments designed by MINITAB 19 software, the characteristic analysis was performed using XRD analysis and nitrogen adsorption method. The crystallinity with R2 = 0.999 was found to be more suitable for the experimental method than that of BET specific surface area. Based on analysis of variance (ANOVA), it was confirmed that the molar ratio of fumaric acid and formic acid was a major factor in determining the crystallinity of MOF-801. Through the response optimization and contour plot of two factors, the optimal molar ratio of ZrOCl2·8H2O : fumaric acid : DMF : formic acid was 1 : 1 : 39 : 35. In order to optimize the synthesis process, the central composition design on synthesis time and temperature was performed under the identical molar ratio of precursors. The results derived through the designed 9 synthesis experiments were calculated using the quadratic model equation. Thus, the maximum crystallinity of MOF-801 predicted under the synthesis time and temperature of 7.8 h and 123 ℃, respectively.