• Title/Summary/Keyword: Nitrogen (N) limitation

Search Result 68, Processing Time 0.02 seconds

Studies on the fluctuation of aerobic free-living nitrogen fixation bacteria in soil beneath the plant covers (식피별 비공생성 호기성 질소고정세균의 변동에 관하여)

  • 이태우;심재국
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 1983
  • The number of aerobic free-living nitrogen fixation bacteria and factors in soil at different stands covered with Pinus rigida, Quercus acutissima and Zoysia japonica in Cheongju area were investigated from Feb. to Sept 1981. 1. The numbers of $N_2-fixation$ bacteria, according to the seasonal changes, increased gradually from winter to spring and summer. But the growth pattern revealed some differences in accordance with plant cover stands : the numbers increased abruptly in May at Pinus, May-June at Quercus and Apr. May at Zoysia stand. The pick of numbers represented in Aug. Sept, at Pinus, Jul-Aug. at Quercus and May-Jun. at Zoysia stand, respectively. 2. The interrelationship between the monthly changes of enviotnmental factors and numbers of $N_2-fixation$ bacteria at different stands, mainly depends upon the soil temperature than other soil factors (r=0.71-0.84). The numbers of $N_2-fixation$ bacteria may increase 5-7 times according to increase $10^{\circ}C$ of soil temperature, and optimal range was $20{\sim}30^{\circ}C$ for growth. Equation of the interrelation between soil temperature and numbers could be stated as follows : log y=ax+b. 3. In the case of high soil temperature, the bacterial numbers presented high level in drought periods. Therefore, the $N_2-fixation$ bacterial species in these soil seem to consist of resistant to desication. 4. The influence of soil organic matter for growth of $N_2-fixation$ bacteria indicated low conrelation. The reason may seen the content of organic matter in these soil existed abundantly above the quantities of limitation for growth. 5. In artifical gradients, the $N_2-fixation$ bacteria were predominated at $20{\sim}30^{\circ}C$ same as natural condition, pH7-8, and 20-30% of soil water contents. 6. The vertical distribution of bacteria marked decreasing trends from surface to lower layers, and the decreasing degree was shown well in Zoysia, Quercus and Pinus stand in order. But in the trees, the numbers increased at 30cm layer estimated the region of root than 20cm layer. 7. Both catalase megative and positive group of $N_2-fixation$ bacteria in soil increased according to the rise of the soil temperature. Catalase positive group was revealed as dominant group in winter, and catalase negative group revealed in summer. The change of dominant pattern was shown during Feb. to Apr.

  • PDF

A Study on the Removal of Ammonia by Using Peat Biofilter (미생물 활성토탄을 이용한 암모니아 제거에 관한 연구)

  • Choung, Youn Kyoo;Ahn, Jun Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.655-668
    • /
    • 1994
  • Conventional deodorization filters using soil and compost reach the capacity limitation of deodorization in short period, because its removal mechanism primarily depends on adsorption. Therefore, in this study the experiment was performed on the removal of ammonia which is a strong inorganic malodor, frequently emitted from night soil treatment plants and sewage treatment plants, by seeding activated sludges on the bio-peat containing higher organic contents, water conservation capacity, permeability and lower pressure drop. As a result, in raw peat filter natural ammonia outlet was observed in consequence of pH increase resulted from ammonia ionizing in liquid phase. Ammonia removal mechanism primarily depended on the adsorption onto the anion colloidal substances in peat. In peat bio-filter, theoretical ammonium salts ratio was higher than that of raw peat, resulted from slight pH increase by microorganism activity, however, the experimetal value of ammonia-nitrogen accumulated in bio-peat was lower than that of raw peat because of nitrification by nitrifying bacteria. In the initial reaction period, adsorption was predominant in the ammonia removal mechanism, but nitrification was conspicuous after the middle period. Mass balance of nitrogen was established using experimental data of input $NH_3$ loading, output $NH_3$ loading, $NH_4{^+}$-N, $NO_x$-N, and Org-N. The critical time of unsteady state, which is the maximum activating point of microorganism in bio-filter, was determined using experimental data, and the ammonia adsorption curve was computed using regression analysis. On the basis of the results obtained by above analysis, the delay days for the saturation of adsoption capacity in peat bio-filter was calculated.

  • PDF

A Study on High Strength Nitrogen Wastewater Treatment and Sludge Granulation Characteristics in a Pilot-scale Air-lift Sequencing Batch Reactor (파일럿 규모의 공기 유동 연속회분반응기에서 고농도 질소제거 및 슬러지 그래뉼화 특성 연구)

  • Lee, Soochul;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.398-403
    • /
    • 2012
  • Selective nitrification and granulation have been carried out in a pilot scale air-lift sequencing batch reactor (SBR) for stable and economical nitrogen removal from wastewater. The SBR showed about 100% nitrification efficiency up to 1.0 kg ${NH_4}^+-N/m^3{\cdot}d$, about 90% efficiency at 1.0-2.0 kg ${NH_4}^+-N/m^3{\cdot}d$, and it was less than 90% when the load was higher than 2.0 kg ${NH_4}^+-N/m^3{\cdot}d$. Nitrite accumulation was induced by selective inhibition of nitrite oxidizing bacteria by free ammonia inhibition and dissolved oxygen limitation. For the purpose, high nitrite ratio (> 0.95) was obtained by keeping the pH higher than 8.0 and dissolved oxygen lower than 1.5 mg/L. In addition, sludge granulation was achieved by keeping reactor settling time to 5 minutes to wash out poor settling sludge and to promote the growth of granulation sludge. The operation accelerated sludge granulation and the sludge volume index (SVI) decreased and stably maintained to less than 75 in 60 days.

Determination of moisture threshold for solution sampling in different soil texture (토양용액 채취를 위한 토성별 한계수분함량 설정)

  • Lee, Chang Hoon;Kim, Myung Sook;Kong, Myung Seok;Kim, Yoo Hak;Oh, Taek-Keun;Kang, Seong Soo
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2014
  • Soil moisture is an important factor for the availability and circulation of nutrients in arable soil. The purpose of this study was to set thresholds moisture content on soil nitrate concentration in the solution for real-time diagnosis. Sandy loam, silt loam, and sandy loam was filled with $1.2g\;cm^{-3}$ at Wagner pots, 0, 100, and $200mg\;L^{-1}$ of $KNO_3$ was saturated. Nitrate in standard solution was recovered about 95% by passing the porous cup. Nitrate concentrations in sampling of soil solution were examined by using a porous cup. The soil solution was higher in accordance with sandy loam> silt loam> clay loam, limited water filled pore space for sampling soil solution was 33.7, 56.4, and 62.2%, respectively. Nitrate concentration in the soil solution was negligible at sandy loam and silt loam during sampling periods, which was decreased about 50~82% in clay loam compared to the initial $NO_3$-N concentration in the saturated $KNO_3$ solution. Over limitation of soil solution sampling, soil EC and $NO_3$-N content were increased with the saturated $NO_3$-N concentration, regardless of soil texture (p<0.05). Conclusively, soil solution by using a porous cup was possible, regardless of the soil texture, which was useful for the diagnosis in nitrate concentration of soil solution. However, because nitrate concentration of soil solution in a clay loam changes, it was necessary for careful attention in order to take advantage for the real-time diagnosis of nitrogen management in soil.

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

Assessment for Production of Organic Matter in the Wando Costal Area. (완도해역에서 유기물의 생산량 평가)

  • Kim Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.3 s.26
    • /
    • pp.165-170
    • /
    • 2006
  • In this study, organic matters production was calculated with long term data in Wando costal area where was selected for non influent of fresh water. The objective of this study was to evaluate relationship between nutrients and phytoplankton and, between phytoplankton and organic matter. The result of DIN was the highest with 0.138 mg/L in winter season and the lowest with 0.052 mg/L in summer season. Similarly, DIP was shown to be 0. 017 mg/L in winter and 0.011 mg/L in summer. Limiting nutrient was revealed with nitrogen in Wando costal area. Specially in summer season, nitrogen limitation was the greatest with 10.5 of N/P ratio. Chl. -a was increased 80%, 108% in spring and summer compare with winter. COD was the lowest with 0.84 mg/L in winter and the highest with 1.10 mg/L in summer. The interrelation between nutrients and Chl. -a was high. Relationship $coefficient(r^2)$ were 0.93(P<0.05), 0.89(P <0.05) between DIN and Chi. -a, DIP and Chl. -a. This results suggest dissolved nutrients might be utilized at the production of phytoplankton. Also Relationship $coefficient(r^2)$ was 0.77(P<0.05) between Chl. -a and COD. COD production rate was calculated with regression equation. The COD production rate was 17% in winter and 36% in summer. It was revealed nutrients were decreased according to temperature increasing and then Phytoplankton and organic matter were increased. The Relationship of Nutrients, Chl. -a and COD was very high.

  • PDF

Surface Physical Properties of W-N Nano Thin Films by Nanotribological Analysis (나노트라이볼로지 분석을 이용한 W-N 나노박막의 표면 물성 연구)

  • Kim, Soo-In;Lee, Kyu-Young;Kim, Joo-Young;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.456-460
    • /
    • 2011
  • Recently, the size of currently-researched components and devices reduces nano-scale. Thus, it is important and emphasizes the analyses of physical properties in nano scale. Especially, the mechanical properties are not over micro-scale components but nano-scale components with different characteristics that has been reported. However, most analytical methods for currently studying in nano-scale are related to spectroscopy and electronics, affected the limitation of viewing size that these methods give only average information. In this research, the representative nanotribology analyses, nano-indenter study the physical and mechanical properties of W-N thin film for nano region and nano depth within nano-scale that the thickness of W-N diffusion barrier has less than tens of nanometers. The Scanning probe microscopy (SPM) study the surface image. From these results, the hardness of W-N thin film underneath the nano-surface decreased from 57.67 GPa to 9.1 GPa according to the increase of nitrogen gas flow. The elastic modulus of W-N thin film underneath the nano-surface also decreased from 575.53 GPa to 178.1 GPa.

Effects of the Limited Nutrient Supply at the Pollination Stage on the Growth and Nutrient Uptake of Muskmelon Grown in Rockwool (온실멜론의 암면재배에 있어서 수분기의 양분공급제한이 생육 및 양분흡수에 미치는 영향)

  • 장홍기;정순주
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • This experiment was carried out to investigate the effects of limited nutrient supply during 21 days before and after pollination stage on the growth, fruit quality and nutrient uptake of muskmelon in rockwool culture. Muskmelon, cv. Earl's Favorite seeds sowed on rockwool cube and transplanted on rockwool slab($90\times15\times7.5cm$) when 2 to 3 true leaf appeared on Sep. 6, 1991. Three kinds of nutrient composition recommended by Shizuoka university, combinated with the composition of Otsuka house A and composition Shizuoka III. One half of calcium nitrate(Ca(NO$_3$)$_2$.4$H_2O$) for limiting nitrogen supply during 21 days was treated and then fertigated the nutrient composition recommended by Shizuoka university up to harvest time. Trickling nozzles(Netafim Co. Israel) were used for fertigation of nutrient solution and noncirculating system was employed. Temperature was maintained $18^{\circ}C$ in night but 23 to $25^{\circ}C$ for 10 days after pollination for softening the fruit. The drainage ratio of nutrient solution was adjusted 20 to 30 percent. Fertigated and drained amount, and the pH and EC of nutrient solution were recorded. The concentrations of mineral elements including N, P, K, Ca, and Mg were analyzed and compared among treatments. In both autumn and winter cultivation, the limitation of nutrient supply by adjustment of nutrient composition(NO$_3$-N : 8meㆍ$\ell^{-1}$) caused the nutrient deficiency in muskmelon plant due to the limited nutrient supply. After pollination nutrient limitation by the lowering the nitrate retarded the over thickening of upper leaves of muskmelon but plant height and fresh weight of fruit were higher in the plot of nonlimited nutrient supply. The phenomena were attributed to the differences of the amount of nutrient uptake due to the limited time of nutrient solution, duration of nutrient supply and concentration of nutrient solution. These results suggested that increasing nutrient supply in the pollination stage was favorable for better appearance of fruit and improving fruit quality. Further trials would be required for the incre-ment of sugar degree of muskmelon grown in rockwool.

  • PDF

Water Quality and Chlorophyll-a at the Birth Stage of a Large Reclaimed Estuarine Lake in Korea (Lake Hwaong) (간척하구호 (화옹호) 태동기의 수질과 엽록소-a 변화)

  • Kim, Ho-Sub;Chung, Mi-Hee;Choi, Chung-Il;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.455-462
    • /
    • 2003
  • This study evaluated the change of water quality and chlorophyll - a at the birth stage of a large reclaimed estuarine lake (Lake Hwaong) of which the dike was finally constructed in March, 2002. Physico -chemical parameters and chlorophyll - a were investigated along a longitudinal transect, including 3 in-lake sites and 1 out-lake site from June to November, 2002. Salinity at all in-lake sites was over 21 psu during the study period, indicating that lake is still in the seawater phase. Salinity was periodically diluted at times when precipitation was high, especially in August. Chemocline was established in July near the dam site, and correspondingly vertical profile of dissolved oxygen was very clear during that Period. Total nitrogen and phosphorus concentrations at all lake sites were in the eutrophic range, and they were especially high at the stream inlet site. Nutrients concentration was not much varied vertically but significantly varied temporally, and correlated significantly with precipitation and chlorophyll-a concentration, indicating that inflowing water from the watershed seemed not to improve lake water by dilution but cause eutrophication of the lake, and thereby stimulate phytoplankton development. Based on the analyses of nutrient ratio (N/P) and trophic state deviation, both phosphorus and nitrogen appeared to limit phytoplankton growth in the lake. Phosphorus limitation appeared to be probable at all in-lake sites with being most severe at the stream inlet site. Nitrogen limitation seemed to occur at both in-lake and out-lake sites. These results indicate that in Lake Hwaong experiencing the very early stage of a reclaiming lake, water quality and phytoplankton development appear to be affect-ed largely by salinity and hydrology and nutrients from the inflowing water. Lake biogeochemistry is still very unstable, and thus further long-term study is necessary to understand the effects of seawater to freshwater conversion on lake biology and water chemistry.

Optimization of Culture Conditions for Production of a High Viscosity Polysaccharide, Methylan, by Methylobacterium organophilum from Methanol. (Methylobacterium organophilum에 의한 메탄올로부터 고점도 다당류, 메틸란 생산을 위한 배양조건 최적화)

  • 최준호;이운택;김상용;오덕근;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.244-249
    • /
    • 1998
  • An extracellular polysaccharide, methylan, was produced under the specific conditions by Methylobacterium organophilum from methanol. The specific growth rate of cells was approximately constant regardless of C/N ratio and the specific product yield was maximum at a C/N ratio of 30. Methylan production was suppressed by the deficiency of mineral ions such as Mn$^{++}$ or Fe$^{++}$ ion. The optimal pH for cell growth and methylan production was 7. Whereas the optimal temperature for cell growth was found to be 37$^{\circ}C$, that for methylan production was 3$0^{\circ}C$. The methanol concentration above 4% completely inhibited the cell growth. The initial methanol concentration for the maximal production of methylan was 0.5% (v/v) and above this concentration, methylan production was markedly inhibited. To overcome the substrate toxicity and inhibition for both cell growth and methylan production, a fed-bach culture of intermittent feeding within 5 g/l methanol was conducted under the optimal culture condition. Methylan production of was stimulated by nitrogen limitation and methylan was accumulated up to 8.7 g/1 and cell mass also increased up to 12.4 g/l.

  • PDF