• Title/Summary/Keyword: Nitrite oxidizer

Search Result 16, Processing Time 0.017 seconds

Complete Decomposition of Chlorinated-Organic Compounds(PCB, 4-DCBz) with Improved Supercritical Water Oxidation Method (개량된 초임계수 산화법에 의한 염소계 유기물(PCB, 4-DCBz)의 완전분해반응)

  • Lee Sang-Hwan;Park Ki-Chul;Park Yoon-Yul;Yang Jong-Gyu;Kim Jung-Sung;Hiroshi Tomiyasu
    • Journal of Environmental Science International
    • /
    • v.14 no.5
    • /
    • pp.513-520
    • /
    • 2005
  • For the destruction of toxic chlorinated organic compounds, this study proposes improved supercritical water oxidation method (multistep oxidation) using sodium nitrate as an oxidizer. This method solves the problems involved in the existing supercritical water oxidation method. Multistep oxidation means that $NaNO_3$ is oxidized to $N_2\;via\;NaNO_2$ and NO. Toxic and hard to destroy organic substances like para-dichlorobenzen(4-DCBz), polychlorinate biphenyl(PCB) ware oxidized to non toxic substances in a condition, in which rapid pressure and temperature rise is restrained as much as possible. 4-dichlorobenzene(4-DCBz) and Polychlorinate biphenyl(PCB) in condition$(450^{\circ}C,\;p_w=0.25g/cm^3,\;30min)$ Was discomposed perfectly.

Decomposition of PVC and Ion Exchange Resin in Supercritical Water

  • Kim Jung-Sung;Lee Sang-Hwan;Park Yoon-Yul;Yasuyo Hoshikawa;Hiroshi Tomiyasu
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.919-928
    • /
    • 2005
  • This study introduces the development of new supercritical water oxidation(SCW)(multiple step oxidation) to destruct recalcitrant organic substances totally and safely by using sodium nitrate as an oxidant. This method has solved the problems of conventional SCW, such as precipitation of salt due to lowered permittivity, pressure increase following rapid rise of reaction temperature, and corrosion of reactor due to the generation of strong acid. Destruction condition and rate in the supercritical water were examined using Polyvinyl Chloride(PVC) and ion exchange resins as organic substances. The experiment was carried out at $450^{\circ}C$ for 30min, which is relatively lower than the temperature for supercritical water oxidation $(600-650^{\circ}C)$. The decomposition rates of various incombustible organic substances were very high [PVC$(87.5\%)$, Anion exchange resin$(98.6\%)$, Cationexchange resin$(98.0\%)$]. It was observed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium (salt formation). However, relatively large amount of sodium nitrate (4 equivalent) was required to raise the decomposition ratio. For complete oxidation of PCB was intended, the amount of oxidizer was an important parameter.

Decomposition of PVC and Ion exchange resin in supercritical water

  • Lee, Sang-Hwan;Yasuyo, Hosgujawa;Kim, Jung-Sung;Park, Yoon-Yul;Hiroshi, Tomiyasu
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.267-271
    • /
    • 2005
  • This experiment was carried out at 450"C, which is relatively lower than the temperature for supercritical water oxidation (600-650$^{\circ}C$). In this experiment, the decomposition rates of various incombustible organic substances were very high. In addition, it was confirmed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium(salt formation).However, to raise the decomposition rate, relatively large amount of sodium nitrate(3-4 times the equivalent weight) was required. When complete oxidation is intended as in the case with PCB, the amount of oxidizer and decomposition cost is important. But when vaporization reduction is required as in the case with nuclear wastes, the amount of radioactive wastes increases instead. But as can be seen in the result of XRD measurement, unreacted sodium nitrate remained unchanged. If oxidation reaction of organic substance simply depends on collision frequency, unreacted sodium nitrate can be recovered and reused, then oxidation equivalent weight would be sufficient. In the gas generated, toxic gas was not found. As the supercritical water medium has high reactivity, it is difficult to generate relatively low energy level SO$_{X}$, and NO$_{X}$.

  • PDF

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

The Influence of Some Soil-treated Herbicides on the Mineralization of Nitrogen Fertilizers II. In an upland soil (토양처리형 제초제가 질소비료의 무기화작용에 미치는 영향 II 밭 토양 조건)

  • Kim Moo Key
    • Korean journal of applied entomology
    • /
    • v.16 no.3 s.32
    • /
    • pp.149-154
    • /
    • 1977
  • Effect of Simazine(2-chloro-4,6-bis (ethylamino)-s-triazine), Nitrofen (2, 4-dichloro-4' -nitrodi­phenylether), Propanil (:3, 4-dichloropropionanilide), and Butachlor (2-chloro-2, 6-diethyl N-(buthoxy­menthyl) acetanilide on urea hydrolysis and subsequent nitrification was investigated in an upland soil incubated at $20\pm1^{\circ}C$. 1. All the herbicides tested had no effect on the hydrolysis of urea to ammonia at the recommended rates. Butachlor, at ten and fifty times the recommended rate, and Nitrofen, at fifty times the recommeded rate, depressed urea hydrolysis, resulting in reduction of ammonia. But the depressive effects were temporary, disappearing soon. Simazine and Propanil had no detrimental effect on urea decomposition at all the treated rates. 2. Also, all the chemicals tested had no effect on the nitrification process at the recommended rates. At higher concentrations of ten and fifty times the recommended rate Butachlor and Nitrofen inhibited the oxidation of nitrite, and propanil long inhibited the oxidation of ammonium to nitrite, but was inactive against nitrite oxidizer. These inhibitive effects of the chemicals, however, disappeared in the later period of incubation. Simazine had no effect on the nitrification process at all the treated rates. 3. The trend of change in soil pH of both the treated and untreated plots well reflected the change of soil nitrogen forms during incubation. No direct effect of the chemicals on soil pH was obserbed.

  • PDF

Comparison of nitrogen removal efficiency on process stability for granular and immobilized anammox bacteria (공정 안정성에 대한 입상 및 고정화 혐기성 암모늄 산화균의 질소제거효율 비교)

  • Choi, Daehee;Bae, Hyokwan;Jung, Jinyoung;Kim, Sang-Hyoun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.195-206
    • /
    • 2014
  • Immobilization of anaerobic ammonium oxidizing bacteria has been studied to enhance the biomass retention of the slowly growing bacteria and the process stability. The purpose of this study was to compare the nitrogen removal efficiency of granular and immobilized anammox bacteria with poly vinyl alcohol and alginate. The specific anammox activity of the granular, homoginized and immobilized anammox bacteria were $0.016{\pm}0.0002gN/gVSS/d$, $0.011{\pm}0.001gN/gVSS/d$ and $0.007{\pm}0.0005gN/gVSS/d$, respectively. Although the activity decreased to 43.7 % of the original one due to low pH and $O_2$ exposure during the homogination and the immobilization, it was rapidly recovered within 7 days in the following continuous culture. When synthetic T-N concentrations of 100, 200, 400, 800 mg/L were fed, the immobilized anammox bacteria showed higher nitrogen removal efficiencies at all operational conditions than those of granular anammox bacteria. When the sludge retention time was shorten below 30.7 days and the reject water was fed, the nitrite removal efficiency of the granular anammox bacteria dropped to 8 % of the initial value, while that of the immobilized anammox bacteria was maintained over 95 % of the initial one. The immobilization with poly vinyl alcohol and alginate would be a feasible method to improve the performance and stability of the anammox process.