• 제목/요약/키워드: Nitrite build-up

검색결과 16건 처리시간 0.021초

고농도 암모니아성 폐수의 질산화과정에서 아질산염 축적의 영향인자 (Factors Influencing Nitrite Build-up Nitrification of High Strength Ammonia Wastewater)

  • 한동준;강성환;임재명
    • 환경위생공학
    • /
    • 제13권2호
    • /
    • pp.128-138
    • /
    • 1998
  • This study was focused to find how each factors effect on the biological nitrification in wastewater treatment under high ammonia nitrogen concentration. Batch reactors in aerobic conditions were used to test the treatment efficiency of mixed liquor, nightsoil and piggery wastewater. The results are summeried as follows; Initial ammonia nitrogen concentration and pH were the direct influencing factors of nitrite build-up. More than 250 mg NH$_{4}$$^{+}$ - N/L in initial concentration built up nitrite and then the inhibition rate to Nitrobacter was above 70 percentage. And maximum nitritation rate was showed at pH 8.3 and nitrification could be completely achieved by pH control. Temperature and dissolved oxygen were the indirect influencing factors of nitrite build-up. These were a great effect on the activity of nitrifying microbes and ammonia nitrogen removal. Maximum nitritation rate was showed at 30 $\circ $C. The effect of DO concentration was negligible at more than 3 mg/L.

  • PDF

Study on Operational Factors in a Nitrite-Accumulating Submerged Membrane Bioreactor

  • Yoo Ik-Keun;Lim Kyoung-Jo;Lee Won-Sik;Kim Dong-Jin;Cha Gi-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.469-474
    • /
    • 2006
  • Partial nitrification blocking of the oxidation of nitrite ($NO_{2}^{-}$) to nitrate ($NO_{3}^{-}$) has cost-efficient advantages such as lower oxygen and organics demand for nitrification and denitrification, respectively. A nitrifying membrane bioreactor of submerged type was operated for the treatment of synthetic ammonium wastewater with the purpose of nitrite build-up without affecting the efficiency of ammonium oxidation. A high ammonium concentration (1,000 mg/l) was completely converted to nitrate at up to 2 kg $N/m^3$ day under sufficient aeration. The control of pH under sufficient aeration was not a reliable strategy to maintain stable nitrite build-up. When the dissolved oxygen concentration was kept at 0.2-0.4 mg/l by adjusting the aeration rate, about 70% of nitrite content was obtained with ammonium oxidation efficiency higher than 93%. The increase of suction pressure due to membrane fouling was not significant under lowered aerating environment over a 6-month period of operation. The composition of nitrifier community, including relative abundance of nitrite oxidizers in a nitrite-accumulating condition, was quantified by fluorescence in situ hybridization analysis.

Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성 (Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter)

  • 유익근
    • 한국물환경학회지
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

암모니아 부하가 활성탄 유동상에서의 질산화 및 아질산 축적에 미치는 영향 (Effects of Ammonia Loading on Nitrification and Nitrite Build-up in an Activated Carbon Fluidized Bed Biofilm Reactor)

  • 최인철;박수영;이관용;배재호;조광명
    • 대한환경공학회지
    • /
    • 제22권1호
    • /
    • pp.53-60
    • /
    • 2000
  • 본 연구는 활성탄 유동상 반응조의 암모니아 부하를 $0.1{\sim}7.5kg\;NH_3-N/m^3{\cdot}day$의 범위에서 단계적으로 증가시키면서 암모니아 부하가 질산화 효율 및 아질산성 질소의 축적에 미치는 영향을 파악하기 위하여 수행되었다. 실험 결과, $1.8kg\;NH_3-N/m^3{\cdot}day$ 이상의 암모니아 부하에서는 처리수의 아질산성 질소 농도 및 질산화 효율이 변동하였지만 평균 90%의 질산화효율을 나타내었으며, 유리 암모니아성 질소의 농도가 1 mg/L 이상으로 측정되었던 $1.8kg\;NH_3-N/m^3{\cdot}day$의 암모니아 부하부터 아질산성 질소의 축적이 시작되었다. 아질산성 질소가 축적되었던 기간에는 유입수의 암모니아성 질소 농도와 반응조내의 용존산소 농도 간의 비가 100 이상이거나 처리수 $NH_3-N$ 농도와 반응조 DO 농도 간의 비가 2 이상이었다. 결론적으로, 활성탄 유동상 반응조는 고농도로 암모니아성 질소를 함유하는 폐수의 생물학적 질산화에 효과적이며, 아질산화-탈질에도 유려할 것으로 판단된다.

  • PDF

하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자 (Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment)

  • 안규홍;박기영;이형집
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구 (Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR)

  • 최인수;우도 비스만
    • 대한환경공학회지
    • /
    • 제29권8호
    • /
    • pp.922-929
    • /
    • 2007
  • 암모니아의 질산염으로의 산화는 2개의 산화과정으로 구분된다. 나이트로좀머나스(Nitrosomonas)에 의한 암모니아의 아질산염으로의 산화와 나이트로박터(Nitrobacter)에 의한 아질산염의 질산염으로의 산화이다. 아질산염 축적 과정을 거치는 질소의 제거는 포기를 위한 에너지의 절약, 탈질과정에서 투입되는 유기물의 절약 및 발생되는 슬러지의 양을 감소시킬 수 있는 다양한 장점들을 가지고 있다. 본 연구에서는 아질산염 축적의 조건들을 찾기 위해 막분리 장치를 장착한 생물분리막 반응조(MBR)가 사용되었다. 생물 분리막 반응조는 성장속도가 늦어 쉽게 유실되어질 수 있는 독립영양 질산화 박테리아를 반응조내 충분히 유지시키는데 중요한 역할을 한다. 반응조내 용존산소와 암모니아의 농도를 변화시키며 아질산염 축적의 영향인자들을 조사하였다. 연구의 결과로 반응조내 높은 암모니아 농도는 아질산염 축적을 시작하는데 매우 효과적이었으며, 이러한 효과는 반응조내 낮은 용존산소 농도가 동시에 존재할 시 더욱 강화되었다. 낮은 용존산소 농도 $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$와 높은 암모니아 농도 $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$에서 아질산염 축적율 74%에 달성될 수 있었다. 특히 아질산염 축적이 많은 연구자들이 제시하는 것처럼 생물막 반응조에서 뿐만 아니라, MBR 반응조에서도 일어날 수 있음을 밝힌 것은 본 연구의 중요한 성과라 할 것이다.

Sensitized Photodegradation of Benzene in Water

  • Kim, Young-Hee;Ahn, Sang-Jun;Park, Hyun-Geoun;Lee, Chun-Sik
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제4권2호
    • /
    • pp.79-84
    • /
    • 2000
  • The photodegradation of benzene was studied in an aqueous solution using a medium pressure Hg-lamp. In this study, persulfate, nitrate, nitrite, chloride, and sulfate ions were all tested as sensitizers. The persulfate, nitrate, and nitrite ions exhibited a sensitizing effect in the photodegradation of benzene, whereas no detectable effects were observed with the sulfate and chloride ions. When nitrite ions were used as the sensitizer, the photodegradation of benzene ran through a maximum value and thereafter decreased with an increasing nitrite concentration. The resulting build-up of nitrite ions seemed to scavenge the hydroxyl radicals. When nitrite ions were present along with persulfate ions, the photodegradation of benzene was inhibited.

  • PDF

2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성 (Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system)

  • 이무재;박상민;전항배;김공수;임정수
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

아질산성 질소의 축적에 대한 용존 산소와 free ammonia의 영향 연구

  • 한동우;이수철;이남희;김동진
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.475-478
    • /
    • 2000
  • For an integrated nitrification-denitrification process, nitrite formation in the aerobic stage leads to big savings. Dissolved oxygen concentration, temperature, pH and free ammonia concentration have been meet for nitrite accumulation. Also their effects over the ammonia oxidizers and nitrite oxidizers have been studied. Dissolved oxygen limitation and free ammonia inhibition led to slow nitrification and nitrite build up. In this study batch kinetics of ammonium and nitrite oxidations were performed with free ammonia accumulated nitrifiers. From the results it is likely the nitrite oxidizers are inhibited by oxygen limitation rather than free ammonia.

  • PDF

수용액에서 UV를 이용한 광증감 산화반응시 증감제에 따른 증감효과에 관한 연구 (Sensitized effects of photo-sensitized oxidation in water under UV irradition)

  • 이춘식;이동근
    • 청정기술
    • /
    • 제4권2호
    • /
    • pp.23-31
    • /
    • 1998
  • 수용액에서 벤젠의 광증감 분해반응을 증감제로서 과황산 이온, 질산 이온, 아질산 이온, 황산 이온, 연소 이온을 이용하여 수행하였다. 과황산 이온, 질산 이온 및 아질산 이온은 벤젠의 광산화 분해 반응에서 증감효과를 나타내었으나, 황산 이온 및 염소 이온은 증감효과를 나타내지 못하였다. 아질산 이온의 경우 농도가 증가함에 따라 벤젠의 광증감 분해반응 효율은 증가하다가 다시 감소하는 경향을 보였으며, 이는 생성된 ${\cdot}OH$라디칼이 아질산 이온에 의해 소멸되기 때문인 것으로 생각된다. 또한 아질산 이온은 다른 이온과 공존할 때 벤젠의 광증감 산화분해 반응을 저해하는 것으로 나타났다. 반응 중간생성물로는 phenol과 biphenyl이 확인되었다.

  • PDF