• Title/Summary/Keyword: Nitrification rate

Search Result 265, Processing Time 0.025 seconds

Treatment Characteristics of Soil Clothing Contact Oxidation Process using Bio-media (생물담체를 충진한 토양피복 산화접촉공정의 하수처리특성)

  • Kim, Hong-Jae;Kang, Jae-Hee;Lee, Ki-Seok;Motoki, Kubo;Kang, Chang-Min;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.414-419
    • /
    • 2005
  • This study was performed to compare the treatment efficiencies of two media, newly developed Bio-rock and conventional gravel, in soil clothing contact oxidation process. The composition of synthetic wastewater were $COD_{Cr}$ $150{\sim}370\;mg/L$, $BOD_5$ $150{\sim}270\;mg/L$, T-N $20{\sim}60\;mg/L$, T-P $5{\sim}25\;mg/L$, pH 7 and 2 mL/L of trace element solution. The experiment using two reactors was comparatively conducted for the flow rate of 40 L/d for 13 months, respectively. Initially Bio-rock reactor was increased to pH 12 due to $Ca(OH)_2$ with hydration of cement, but gravel reactor was dropped to pH 4 due to the degradation of organic material and nitrification. This significant pH variation deteriorated the growth and activity of microorganism. But the high pH of Bio-rock seems favorite to ammonia stripping and precipitation of phosphate. Such pH variation of Bio-rock and gravel reactors were finally stabilized to pH 8 and pH 6, respectively. The removal efficiencies of organic compounds from Bio-rock reactor were 96% of $COD_{Cr}$, 98% of $BOD_5$, 80% of T-N and 85% of T-P which stably coping against variation of influent concentration. But those of gravel reactor were 96% of $COD_{Cr}$, 96% of $BOD_5$, 42% of T-N and 40% of T-P, respectively. The Bio-rock was 2 times higher than T-N and T-P in treatment efficiency. And electron-microscopic examination showed that Bio-rock was more favorable to microbial adherence than gravel. The microbial populations were $5.2{\times}10^6\;CFU/mL$ of Bio-rock reactor compared to $2.6{\times}10^6\;CFU/mL$ in gravel reactor. In result Bio-rock was favor to microbial adherence and high treatment efficiency in spite of variation of influent concentration which had the advantages in saving running time and reducing site requirement.

Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells (소성온도에 따른 굴 패각의 영양염 제거 성능 평가)

  • Jeong, Ilwon;Woo, Hee-eun;Lee, In-Cheol;Kim, Jinsoo;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.906-913
    • /
    • 2019
  • To evaluate the removal performance of PO4-P and NH3-N, laboratory experiments were conducted by filling a container with oyster shells, pyrolyzed at 100℃ (POS100), 600℃ (POS600) and 800℃ (POS800), and passing artificial wastewaters through the container. The pH in the ef luent was found to increase due to CaO eluted from oyster shell. Removal amounts of PO4-P of ~23.1 mg/kg, 16.1 mg/kg, and 15.9 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used; therefore, the highest PO4-P removal amount was obtained when POS100 was used. It is considered that Ca and dolomite in the oyster shells adsorbed and precipitated PO4-P. Removal amounts of NH3-N were of ~3.56 mg/kg, 5.72 mg/kg, and 3.97 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used The low removal rate for NH3-N is probably due to unstable nitrification, use of sealed containers, and the effect of NH3-N being converted to NH4+ upon increasing pH. Based on these results, pyrolyzed oyster shell is expected to promote changes in PO4-P and NH3-N concentrations through chemical reactions. These results can also be used for basic research in the development of wastewater treatment.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

A Study on the Mitigation of Nitrous Oxide emission with the Horticultural Fertilizer of Containing Urease Inhibitor in Hot Pepper and Chinese Cabbage Field (고추와 배추 재배지에서 요소분해효소 억제제 함유 원예용 비료 시용에 따른 아산화질소 배출 저감 효과)

  • Ju, Ok Jung;Lim, Gap June;Lee, Sang Duk;Won, Tae Jin;Park, Jung Soo;Kang, Chang Sung;Hong, Soon Sung;Kang, Nam Goo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • BACKGROUND: About 81% of nitrous oxide ($N_2O$) emissions from agricultural land to the atmosphere is due to nitrogen (N) fertilizer application. Mitigation of $N_2O$ emissions can be more effective in controlling biochemical processes such as nitrification and denitrification in the soil rather than decreasing fertilizer application. The use of urease inhibitors is an effective way to improve N fertilizer efficiency and reduce $N_2O$ emissions. Several compounds act as urease inhibitors, but N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide. METHODS AND RESULTS: Hot pepper and chinese cabbage were cultivated in five treatments: standard fertilizer of nitrogen-phosphorus-potassium(N-P-K, $N-P_2O_5-K_2O$: 22.5-11.2-14.9 kg/ha for hot pepper and $N-P_2O_5-K_2O$: 32.0-7.8-19.8 kg/ha for chinese cabbage), no fertilizer, and NBPT-treated fertilizer of 0.5, 1.0, and 2.0 times of nitrogen basal application rate of the standard fertilizer, respectively in Gyeonggi-do Hwaseong-si for 2 years(2015-2016). According to application of NBPT-treated fertilizer in hot pepper and chinese cabbage, $N_2O$ emission decreased by 19-20% compared to that of the standard fertilizer plot. CONCLUSION: NBPT-treated fertilizer proved that $N_2O$ emissions decreased statistically significant in the same growth conditions as the standard fertilization in the hot pepper and chinese cabbage cultivated fields. It means that NBPT-treated fertilizer can be applied for N fertilizer efficiency and $N_2O$ emissions reduction.

Studies on the fate of nitrogen in the paddy soil (답토양(沓土壤)에서 질소(窒素)의 동태(動態)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • In order to investigate the fate of nitrogen in the paddy soil, Suchang, Hwasoon and Susan soil which have different properties, were treated with several nitrogen fertilizers such as ammonium chloride, ammonium sulfate, urea and SCU (sulfur-coated urea), and incubated under water-logged condition in $30^{\circ}C$ incubator. $NH_4-N$, $NO_3-N$, $Fe^{++}$ and pH in soil and stagnant water, were determined at 10, 20, 30, 40 and 50 days after incubation. The obtained results were summarized as follows: 1. The effect of rising temperature was increased in order of Hwasoon>Suchang>Susan and the effect of air drying soil was risen in order of Susan>Hwasoon>Suchang, while the rate of ammonication was in order of Susan>Suchang>Hwasoon. 2. The changes of $NH_4-N$ in stagnant water was dependent upon the nitrogen concentration of $NH_4Cl$ and $(NH_4)SO_4$ plat was high and decreased after 30 days incubation, but increased after 40 days and then decreased again. In contrast with the above, $NH_4-N$ concentration of urea and SCU plot was low but the change showed slightly through the incubation period. 3. Accumulation of $NH_4-N$ in the oxidative layer of the $NH_4Cl$ and $(NH_4)_2SO_4$ plot was higher than that of urea and SCU plot and $NH_4-N$ content was decreased with the incubation period. The change of $NH_4-N$ in the reductive layer showed the same pattern. 4. The changes of $NO_3-N$ in the stagnant water were different according to soil properties and nitrogen fertilizer. $NO_3-N$ concentration in stagnant water of urea and SCU plot was higher than in the $NH_4-Cl$ $(NH_4)_2SO_4$ plot and nearly disappeared after 30 to 40 days incubation. 5. The $NO_3-N$ concentration in the oxidative layer of soil was higher than reductive layer. The pattern of change was different in accordance with soil properties and nitrogen fertilizers. In general, nitrification in urea and SCU plot was more increased than $(NH_4)_2SO_4$ plot. In reductive layer, the concentration of $NO_3-N$ was very low until 30 days incubation and thereafter increased slightly. 6. Upon the concentration of $NH_4-N$ and $NO_3-N$ in stagnant water and soil, it was assumed that denitification of urea and SCU plot was higher than $NH_4Cl$ and $(NH_4)_2SO_4$ plot and denitrified nitrogen in incubation period was above 50%.

  • PDF