• Title/Summary/Keyword: Nitrification rate

Search Result 265, Processing Time 0.021 seconds

소화신산의 화산분화후에 성립한 두메오리나무 임분의 질소무기화와 질화작용 - NH$_{4}$

  • 문현식;춘목아관
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.751-757
    • /
    • 1998
  • Nitrogen dynamics in mineral soils of an alder (Alnus maximowiczii) stand established on volcano Mt. Showa-Shinzan were measured by laboratory incubation method in order to clarify characteristics of $NH_{4}^{+}$ mineralization and nitrification rate, from August 1994 to July 196. Contents of total N and organic matter were relatively low, but increased in May-July. Extractable $NH_{4}^{+}$ concentrations and $NH_{4}^{+}$ mineralization were high in June and July, and decreased in midsummer and fall. Extractable $NO_{3}^{-}$ concentrations did not vary seasonally. Negative values at $NH_{4}^{+}$ mineralization and nitrification rate were observed in August and September. $NH_{4}^{+}$ mineralization was positively correlated with soil organic matter, and nitrification rates were influenced by extractable $NH_{4}^{+}$ concentration and $NH_{4}^{+}$ mineralization.

  • PDF

Nitrification and Denitrification of Land-based Fish Farm Wastewater using an Anaerobic-Aerobic Upflow Biological Aerated Filter (혐기-호기 상향류 필터 공정에서 양식배출수의 질산화 및 탈질 연구)

  • Park, Noh-Back;Lee, Hyun-Young;Kim, Seong-Min;Lee, Jun-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.622-629
    • /
    • 2014
  • This study induced biological denitrification and nitrification via a biofiltration process with the view of removing nitrogen from land-based fish farm effluent. To achieve this, we operated an aquaculture nitrogen-removal system that includes a denitrification and nitrification reactor [working volume 40 L, flow rate 64.8 L, HRT (hydraulic retention time) 14.8 h, HRT considering recycling of NOx 7.4 h]. In the continuous process, the nitrification rate of ammonium nitrogen exceeded 90% at a steady state and the denitrification efficiency exceeded 80% with recycling to a pre-anoxic reactor. In addition, the pH in the final effluent was lower with a low influent water alkalinity averaging 100 mg/L (as $CaCO_3$). For effective denitrification reactions, carbon must be supplied via particulate organic matter (POM) hydrolysis because of the low C/N (carbon/nitrogen) ratio in the water.

A Study on Nitrification in tim Main Stream of the Naktong River (낙동강 본류에 대한 질화작용의 조사연구)

  • 김형섭;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1983
  • This study was carried out to investigate nitrification in the main stream of the Naktong river for two times, 12-13 August and 23-26 September 1982. The results of this study were as follows : 1. The increase of nitrogen concentration was due to inflow of Geumho river, which was polluted by the municipal and industrial wastewater of Daegu city. 2. The rate constant of ammonia calculated for three reaches was high according to the stream flow and was eminently low in the reach from Goroung to Gangjung. (0.068-0.116 $day^{-1}$). This phenomena might be attributed to the sublethal or even lethal effect upon aquatic life by relatively low DO concentration and high heavy metal concentration. 3. DO consumption rate by nitrification was highest for the reach from Goroung to Daeam where was affected by Geumho river. (56.7-147.8%). This phenomena might be attributed to low DO concentration and high nitrogen concentration. Especially, the less stream flow was, the higher DO consumption was. And so, nitrification in the station where is low DO concentration, especially under the low flow condition, might cause more serious water quality management problem. Therefore, for the purpose of effective conservation of water quality in the Naktong river, it was suggested that We have more concern about the nitrogen compound, and more study on the nitrification phenomena.

  • PDF

Impacts of the Hydraulic Loading Rate and C/N Ratio on Nitrification in a Trickling Filter with Styrofoam Bead Media in Seawater (살수식 여과조의 질산화작용에 대한 수리학적 부하량과 C/N 비의 영향)

  • Choi, TaeGun;Kim, Pyong-kih;Park, JeongHwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.256-267
    • /
    • 2019
  • Styrofoam beads, which are relatively inexpensive and can provide a large specific surface area, were tested as filter media. Styrofoam beads with a diameter of $3{\pm}0.5mm$ were used; the specific surface area of the beads was $1,034m^2{\cdot}m^{-3}$. Five independent recirculating culture systems were used in the experiment. Each system consisted of one culture tank and three trickling bio-filters. Using the systems, nitrification efficiency was evaluated with respect to hydraulic loading rate (HLR) and carbon/nitrogen (C/N) ratio. The lowest ammonia and nitrogen concentrations were $0.84mg{\cdot}L^{-1}$ and $1.30mg{\cdot}L^{-1}$, respectively, observed at an HLR of $50.9m^3{\cdot}m^{-2}{\cdot}h^{-1}$. Nitrification efficiency in the culture tank was highest at a C/N ratio of 0, with ammonia and nitrite nitrogen concentrations of $0.32mg{\cdot}L^{-1}$ and $0.90mg{\cdot}L^{-1}$, respectively. Ammonia and nitrite nitrogen concentrations in the culture tank abruptly changed at C/N ratios ${\geq}3$.

Nitrogen Mineralization and Nitrification in a Mature Quercus acutissima Stand in Kwangnung, Kyonggi Province (경기도(京畿道) 광릉(光陵) 상수리나무 성숙림(成熟林)의 질소(窒素) 무기화(無機化)에 관(關)한 연구(硏究))

  • Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.20-26
    • /
    • 1998
  • The objective of this study was to determine the rate of nitrogen mineralization and nitrification in a mature sawtooth oak(Quercus acutissima $C_{ARRUTH}$) stand in the Chungbu Forest Experiment Station, Kyonggi Province. Nitrogen mineralization and nitrification in the top 15cm of mineral soil were examined from November 1995 to November 1996 using an in situ buried bag method. Net nitrogen mineralization was 95.2mg/kg/yr and nitrification was 65.4mg/kg/yr. Nitrification consisted of 69% of annual nitrogen mineralization. Neither nitrogen mineralization nor nitrification was significantly correlated with the monthly soil temperature and soil moisture content.

  • PDF

Microbial Activity of Ammonia Oxidizing Bacteria and Ammonia Oxidizing Archaea in the Rice Paddy Soil in Wang-gung Area of Iksan, Korea (익산 왕궁지역 논 토양에서의 질산화 세균과 질산화 고세균의 미생물학적 작용)

  • Kim, Hyun-su
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.50-59
    • /
    • 2016
  • Spatial and temporal changes in nitrification activities and distribution of microbial population of ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) in paddy soils were investigated. Soil samples were collected in March and October 2015 from rice paddy with and without the presence of confined animal feeding operations. Incubation experiments and quantitative polymerase chain reaction showed that AOA's contribution to nitrification kinetics was much higher in locations where organic nitrogen in animal waste is expected to significantly contribute to overall nitrogen budget, and temporal variations in nitrification kinetics were much smaller for AOA than AOB. These differences were interpreted to indicate that different microbial responses of two microbial populations to the types and concentrations of nitrogen substrates were the main determining factors of nitrification processes in the paddy soils. The copy numbers of ammonium monooxygenase gene showed that AOA colonized the paddy soils in higher numbers than AOB with stable distribution while AOB showed variation especially in March. Although small in numbers, AOB population turned out to exert more influence on nitrification potential than AOA, which was attributed to higher fluctuation in AOB cell numbers and nitrification reaction rate per cells.

Nitrification Efficiency of the Fluidized Sand Biofilter by TAN Leading Rates and Temperatures in the Simulated Seawater Aquaculture Condition (해수 조건에서 모래유동층 여과조의 TAN 부하량과 수온에 따른 질산화 효율)

  • Park, Jeong-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.6
    • /
    • pp.347-352
    • /
    • 2005
  • These experiments investigated the conditioning pattern and the nitrification efficiency of a fluidized sand biofilter (FSB) for seawater application. The FSB fed artificial nutrient was fully conditioned within 22 weeks. The maximum nitrification efficiency of the FSB was achieved at a superficial water velocity (SWV) of 1.0 cm/sec. After fixing the superficial water velocity at 1.0 cm/sec, the nitrification rates of the FSB were assessed at 3 total ammonia nitrogen (TAN) loading rates (250, 500, 1,000 g TAN/$m^3$/day) and 3 water temperatures (12, 16, $20^{\circ}C$). The TAN concentration in the simulated culture tank ranged from 2.87 to 9.72 mg/L at TAN loading rate of 1,000 g TAN/$m^3$/day, while that ranged from 0.45 to 1.26 mg/L at TAN loading rate of 500 g TAN/$m^3$/day. The ranges of TAN concentration in the former were too high for aquatic organisms and those in the latter were acceptable. Therefore, the safe TAN loading rate for the FSB in seawater conditions was decided as 500 g TA/$m^3$/day. From these results, daily TAN removal rates (g TAN/$m^3$/day) of FSB under conditions of inlet TAN concentration (C, mg/L) and water temperature (T, $^{\circ}C$) were calculated by the following non-linear multi-regression equation: TAN removal rate: f(z)=-1,311.295+655.714LnT+225.775LnC ($r^2=0.962$).

Factors Influencing Nitrite Build-up Nitrification of High Strength Ammonia Wastewater (고농도 암모니아성 폐수의 질산화과정에서 아질산염 축적의 영향인자)

  • 한동준;강성환;임재명
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.128-138
    • /
    • 1998
  • This study was focused to find how each factors effect on the biological nitrification in wastewater treatment under high ammonia nitrogen concentration. Batch reactors in aerobic conditions were used to test the treatment efficiency of mixed liquor, nightsoil and piggery wastewater. The results are summeried as follows; Initial ammonia nitrogen concentration and pH were the direct influencing factors of nitrite build-up. More than 250 mg NH$_{4}$$^{+}$ - N/L in initial concentration built up nitrite and then the inhibition rate to Nitrobacter was above 70 percentage. And maximum nitritation rate was showed at pH 8.3 and nitrification could be completely achieved by pH control. Temperature and dissolved oxygen were the indirect influencing factors of nitrite build-up. These were a great effect on the activity of nitrifying microbes and ammonia nitrogen removal. Maximum nitritation rate was showed at 30 $\circ $C. The effect of DO concentration was negligible at more than 3 mg/L.

  • PDF

A Study on Degradation of Nitrogen Compounds by Biofilm Reactor Packed with Porous Media (다공성 담체를 이용한 생물막 반응조의 질소화합물 분해에 관한 연구)

  • Cho, Hae-Mi;Kim, So-Yeon;Yoon, Ji-Hyun;Han, Gee-Bong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.776-780
    • /
    • 2007
  • A biofilm reactor packed with porous media was investigated for nitrogen removal of synthetic wastewater. The effect of different loading rates on the nitrification was sustained to be steady state with stable efficiency of 50~60% in the range of $0.0083{\sim}0.017gNH_4-N/gMLVSS{\cdot}day$ of F/MN ratio and $1{\sim}2kgNH_4-N/m^3{\cdot}day$ of media volumetric loading rate. However, nitrification efficiency was rapidly decreased to 25~30% as F/MN ratio and media volumetric loading rate were increased to the range of $0.025{\sim}0.034gNH_4-N/gMLVSS{\cdot}day$ and $3{\sim}4kgNH_4-N/m^3{\cdot}day$, respectively. Also the consumption rate of alkalinity was higher under 8 hours of HRT than unter 6 hours of HRT. Accordingly the influent loading rate variation by detention time with influent flow influenced more on the nitrification efficiency than the influent loading rate variation by the influent concentration did. The temperature effect on the nitrification showed 25% higher in summer than in winter as the results reported by other researchers who reported that the nitrification efficiency in biofilm showed 20% increase from 55% to 75% when the temperature was raised from $20^{\circ}C$ to $25^{\circ}C$. Denitrification with sulfur-media showed 90% removal efficiency under steady-state with no effect from the increase of influent concentration and empty bed contact time (EBCT) change such as EBCT was decreased from 8.4 hr to 4.3 hr and $NO_3-N$ loading rate was changed within the range of $0.1{\sim}0.4kgNO^3-N/m^3{\cdot}day$. Accordingly Denitrification with sulfur-media is feasible for post denitrification at the concentration less than $80mgNO^3-N/L$.

Nitrification Performance of a Moving Bed Bioreactor (MBBR) at Different Ammonia and Hydraulic Air-Loading Rates under Seawater Conditions (해수 조건에서 총암모니아성 질소 부하량과 수리학적 공기 부하량에 따른 유동상 여과조의 질산화 성능 평가)

  • Jaegeon Lee;Younghun Lee;Jeonghwan Park
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.870-877
    • /
    • 2023
  • The purpose of this study was to assess the efficiency of nitrification based on ammonia loading rates and hydraulic air-loading rates in a moving bed bioreactor (MBBR) under seawater conditions. The goal was to provide foundational data for the design of these bio reactors. At an ammonia loading rate of 0.2 g TAN·m-2 surface area·day-1, the influent TAN concentration was determined to be 1.76±0.33 mg·L-1, which is below the safe concentration for fish survival (2 mg·L-1). Considering operational aspects, the optimal ammonia-loading rate was derived. Subsequently, experimental results for nitrification efficiency at the optimal ammonia-loading rate revealed that the optimum hydraulic air-loading rate was 1.8 L·air·m-2 surface area·min-1. This condition resulted in the lowest concentrations of TAN and NO2-N in the influent water, thus establishing the optimal hydraulic air-loading rate. A regression equation was derived for the ammonia-removal rate (Y) based on the ammonia-loading rate (x) and expressed as a 0.5-order equation (Y=ax0.5+b). Specifically, for TAN concentrations of 0-6 mg·L-1, the regression equation Y=0.1683x0.5-0.13628, was established.