• Title/Summary/Keyword: Nitrification Rate

Search Result 265, Processing Time 0.024 seconds

Nitrification/Denitrification Rate and Classification of Output Nitrogen according to COD Loads in SBR (연속회분식 공정에서 COD부하에 따른 질산화/탈질율 및 유출질소 분휴)

  • Lee, Jaekune;Yim, Soobin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • In this study, we investigated the nitrification/denitrification rate and classification of output nitrogen of a sequencing batch reactor (SBR) system with the variation of COD loads ; COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$ were tested to determine the optimum conditions for the operation of the SBR and increase its nitrogen removal efficiency. As the COD loads increased, the nitrification rate at aerobic(I) period and the denitrification rate at anoxic(I) period were decreased. With the variation of COD loads, the amounts of nitrogen removed in the clarified water effluent were 63.9, 54.2, 34.7, 22.5, 13.7, 12.5 and 26.5 mg/cycle, respectively. The amounts of nitrogen removed during the sludge waste process were 19.5, 26.6, 41.0, 47.3, 58.1, 72.4 and 88.1 mg/cycle, respectively. The amounts of nitrogen removed by denitrification were 66.8, 69.3, 68.9, 56.5, 39.5, 7.3 and 0.0 mg/cycle, respectively, indicating that COD load more than $0.7kgCOD/m^3{\cdot}d$ decreases the amounts of denitrified nitrogen. The nitrogen mass balances were calculated as the percentages of nitrogen removed in the clarified water effluent or by denitrification and sludge waste processing in each cycle of SBR operation and were 99.0, 98.5, 95.4, 82.1, 73.0, 60.5 and 74.8% for COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$, respectively.

A Study on Phosphorus and Nitrogen Removal with Unit Operation in the Ferrous Nutrient Removal Process (철전기분해장치(FNR)에서 단위공정에 따른 질소와 인의 제거)

  • Kim, Soo Bok;Kim, Young-Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Objectives: The purpose of this experiment was to illuminate the relationship between the phosphorus removal rate of unit operation and the phosphorus removal rate of phosphorus volume loading in the Ferrous Nutrient Removal process, which consists of an anoxic basin, oxic basin, and iron precipitation apparatus. Methods: This study was conducted in order to improve the effect of nitrogen and phosphorus removal in domestic wastewater using the FNR (Ferrous Nutrient Removal) process which features an iron precipitation reactor in anoxic and oxic basins. The average concentration of TN and TP was analyzed in a pilot plant ($50m^3/day$). Results: The removal rate of T-N and T-P were 66.5% and 92.8%, respectively. The $NH_3-N$ concentration of effluent was 2.62 mg/l with nitrification in the oxic basin even though the influent was 17.7 mg/l. The $NO_3$-N concentration of effluent was 5.83 mg/l through nitrification in oxic basin even though the influent and anoxic basin were 0.82 mg/l and 1.00 mg/l, respectively. The specific nitrification of the oxic basin ($mg.NH_3$-Nremoved/gMLVSSd) was 16.5 and specific de-nitrification ($mg.NO_3$-Nremoved/gMLVSSd) was 90.8. The T-P removal rate was higher in the oxic basin as T-P of influent was consumed at a rate of 56.3% in the anoxic basin but at 90.3% in the oxic basin. The TP removal rate (mg.TP/g.MLSS.d) ranged from 2.01 to 4.67 (3.06) as the volume loading of T-P was increased, Conclusions: The test results showed that the electrolysis of iron is an effective method of phosphorus removal. Regardless of the temperature and organic matter content of the influent, the quality of phosphorus in the treated water was both relatively stable and high due to the high removal efficiency. Nitrogen removal efficiency was 66.5% because organic matter from the influent serves as a carbon source in the anoxic basin.

A Study on the Rotating Biological Contactors for the Nitrification of Sewage (회전원판공정을 이용한 하수의 질산화에 관한 연구)

  • Jung, Kun-jin;Lee, Sang-Soo;Kim, Si-Hyeon;Park, Kyoo-hong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.189-199
    • /
    • 2002
  • Nitrogen, in its various forms, can deplete dissolved oxygen levels in receiving waters, stimulate aquatic growth, exhibit toxicity toward aquatic life and affect the suitability of sewage for reuse. Pilot-scale Rotating Biological Contactor(RBC) experiments were conducted to examine biological nitrification, respectively, of municipal sewage with five different internal recirculation ratios of 0, 1, 2, 3, and 4 using the constant hydraulic loading of $205L/m^2{\cdot}day$. The use of internal recirculation improved nitrification on account of the dilution of biodegradable organic carbon in influent sewage down to 15 mg/L of $SBOD_5$ or less. Ammonium nitrogen of $14.3{\pm}2.4%$ was consumed by cellular assimilation without the occurrence of denitrification. The thickness of biofilm didn't seem effect significantly the nitrification and denitrification. Nitrification with internal recirculation was found to occur using hydraulic loading rate of as high as $205L/m^2{\cdot}day$, which was beyond the generally known values of it.

A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor (Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구)

  • Seo Jong-Hwan;Lee Chul-Seung
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

Improvement of Nitrification Efficiency by Activated Nitrifying Bacteria Injection at Low Temperature (활성화된 질산화균 주입에 의한 저온 질산화효율 향상)

  • Lim, Dongil;Kim, Younghee
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.473-483
    • /
    • 2018
  • In this study, we have developed a lab scale bioreactor to identify the characteristics of nitrification reaction according to operation condition (temperature, inhibitor (as Cl), activated nitrifying bacteria (ANB). etc) to improve nitrification efficiency at low temperature. Recovery rate of nitrification took about 4 days to reach the normal level by injected ANB after inhibition shock of CI injection at $20^{\circ}C$, when measured the concentration of $NO_2{^-}-N+NO_3{^-}-N$ in the effluent. In the case of $10^{\circ}C$, recovery of nitrification rate took about 4 days to reach the level of half to the normal level and 7 days for complete recovery which took 3 days more than those at $20^{\circ}C$. At $10^{\circ}C$ considering the winter season, the specific nitrification rate(SNR) of the from 1 day to 6 days after injected ANB according to its operation condition increased from 0.029 to 0.767 mgN/gSS/hr. The simulated SNR for the 8th day after the injected ANB at $10^{\circ}C$ was 0.840, 3.625 mgN/gSS/hr, respectively as linear function and exponential function, expecting to exceed level of 2.592 mgN/gSS/hr at normal condition. It was confirmed that injection of ANB during low temperature operation has many effects for improving nitrification efficiency through this study. In future studies, if further studies are carried out the determination of ANB injection and the design of efficient ANB reactor considering the changes of operating characteristics by site, it will contribute to the improvement of nitrification efficiency in winter season.

Effect of Zinc on the Suspended Growth Biological Wastewater Treatment (부유 성장식 생물학적 폐수처리에 미치는 아연의 영향)

  • Seo, Jeong-Beom;Hwang, Chang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • This study was performed to examine the effect of zinc on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A^2/O$). The results of this study can be summarized as follows. In the case of the effect of zinc on organic treatment, zinc had no effect up to 12 mg/L with batch reactor but biodegradability was lowered when it was above 3.0 mg/L with CSTR. Concerning the case on nitrification and removal of nitrogen, nitrification rate was lowered when zinc was above 6.0 mg/L with batch reactor and removal rate of nitrogen was lowered when zinc was above 3.0 mg/L with CSTR. Removal rate of phosphorus was lowered when it was above 6.0 mg/L zinc with batch reactor and above 3.0 mg/L zinc with CSTR. In the case of OUR, it decreased as microbial activity was affected when zinc concentration was above 3.0 mg/L in CSTR.

Effects of Initial Concentration of Ammonium Ion and Active Nitrifiers on Nitrification (암모늄 이온 및 질산화균의 초기 농도가 질산화에 미치는 영향)

  • Kim, Jung Hoon;Kim, Young Ju;Park, Hung Suck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.421-426
    • /
    • 2006
  • The effect of initial concentration of ammonium ion ($N_0$) and active nitrifiers ($X_0$) on nitrification was examined by continuous monitoring of the ammonium removal rate. The concentration of the active nitrifiers in the culture sludge, measured by the oxygen uptake rate (OUR), was found to be 42.8% of the culture sludge. Experiments were carried out under different ratios of $N_0/X_0$, viz., 0.025 to 0.493. The results from this study show that the oxidation rate was similar under the same $N_0/X_0$ ratio despite different initial concentration of ammonium ion ($N_0$) and active nitrifiers ($X_0$). Moreover, the Contois kinetic expression which includes biomass concentration, was found to describe the mechanism behind nitrification process. The ammonium oxidation rate ($q_{Nmax}$) and half saturation constant per unit activated nitrifiers ($K_N{^{\prime}}$) were theoretically determined using the Contois expression. These values were found to be 4.32 gN/gVSS/day and 0.013 gN/gVSS respectively.

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Optimum loading capacity and nitrification characteristics of the swine wastewater treatment process using soil microbe (토양미생물을 이용한 축산폐수 처리공정의 적정부하율과 질산화공정의 특성)

  • Ha, Jun-Soo;Shin, Nam-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.183-187
    • /
    • 2000
  • Removal rate of nitrogen compound containing swine wastewater was 97 percent in case of high loading rate treatment of swine wastewater at studies for process development using soil microorganism. Minimum hydraulic retention time(HRT) for nitrification process was 11 days and solid retention time was 25 days. Nitrification was between 5 and 11 days but this time $NO_2-N$ was remained. Reactor condition was injured to nitrosomonas according to pH, $NO_2\;^--N$, and $NH_3\;^--N$ concentration but this condition was recover to pH controlling.

  • PDF

Isolation and Nitrogen Removal Characteristics of Heterotrophic Nitrification-Aerobic Denitrifying Bacteria, Stenotrophomonas sp. CW-4Y (종속영양 질산화- 호기적탈질 세균 Stenotrophomonas sp. CW-4Y의 분리와 질소제거 특성)

  • Lee, Eun Young;Lee, Chang Won
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • CW-4Y was identified as Stenotrophomonas sp. by morphological and physiological characteristics, and phylogenetic analysis of its 16S rDNA gene sequence. Nitrogen removal by CW-4Y was analyzed in relation to the ammonium concentration, presence of organic carbon, carbon source, and carbon-to-nitrogen ratio (C/N). Stenotrophomonas CW-4Y has heterotrophic nitrification and aerobic denitrification abilities. Stenotrophomonas CW-4Y utilized only glucose as carbon sources, and heterotrophic nitrification and aerobic denitrification were observed regardless of the type of nitrogen source. The maximum ammonium removal rate of CW-4Y was 80 $mg-N{\cdot}L^{-1}{\cdot}d^{-1}$ and its denitrification rate of 192 $mg-N{\cdot}L^{-1}{\cdot}d^{-1}$ at $NO_3{^-}-N$ (about 280 ppm) in shake culture experiments at a C/N ratio of about 15 was about 30 times higher than those of other bacteria with the same ability.