• Title/Summary/Keyword: Nitride Film

Search Result 497, Processing Time 0.027 seconds

Investigation of the Polarity in GaN Grown by HVPE (HVPE법으로 성장시킨 GaN의 극성 분석)

  • 정회구;정수진
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2003
  • The crystals of group-Ⅲ nitride semiconductors with wurtzite structure exhibit a strong polarity. Especially, GaN has characteristics of different growth rate, anisotropic electrical and optical properties due to the polarity. In this work, GaN epilayer was grown and the polarities of the crystals were observed by the chemical wet etching and SP-EFM. GaN thin films were deposited on c-plane A1₂O₃ substrate under the variations of growth conditions by HVPE such as the deposition temperature of the buffer layer, the deposition time, the ratio of Group-V and Ⅲ and the deposition temperature of the film. The adquate results were obtained under the conditions of 500℃, 90 seconds, 1333 and 1080℃, respectively. It is observed that the GaN layer grown without the buffer layer has N-polarity and the GaN layer grown on the buffer layer has Ga-polarity. Fine crystal single particles were grown on c-plane A1₂O₃ and SiO₂, layer. The external shape of the crystal shows {10-11}{10-10}(000-1) planes as expected in the PBC theory and anisotropic behavior along c-axis is obvious. As a result of etching on each plane, (000-1) and {10-11}planes were etched strongly due to the N-polarity and {10-10} plane was not affected due to the non-polarity. In the case of the crystal grown on c-plane A1₂O₃, two types of crystals were grown. They were hexagonal pyramidal-shape with {10-11}plane and hexagonal prism with basal plane. The latter might be grown by twin plane reentrant edge (TPRE) growth.

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

SAW characteristics of AlN films sputtered on SiC buffer layer for harsh environment applications (SiC 버퍼충위 스퍼터링법으로 증착된 극한 환경용 AlN박막의 SAW 특성)

  • Hoang, Si-Hong;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.273-273
    • /
    • 2008
  • This paper describes the frequency response of two-port surface acoustic wave (SAW) resonator made of 002-polycrystalline aluminum nitride (AlN) thin film on 111-poly 3C-SiC buffer layer. In there, Polycrystalline AlN thin films were deposited on polycrystalline 3C-SiC buffer layer by pulsed reactive magnetron sputtering system, the polycrystalline 3C-SiC was grown on $SiO_2$/Si sample by CVD. The obtained results such as the temperature coefficient of frequency (TCF) of the device is about from 15.9 to 18.5 ppm/$^{\circ}C$, the change in resonance frequency is approximately linear (30-$150^{\circ}C$), which resonance frequency of AlN/3C-SiC structure has high temperature stability. The characteristics of AlN thin films grown on 3C-SiC buffer layer are also evaluated by using the XRD, and AFM images.

  • PDF

Studies on the deposition of ${Si_3}{N_4}$ for the passivation of PHEMT's (PHEMT Passivation을 위한 ${Si_3}{N_4}$)

  • Sin, Jae-Wan;Park, Hyeon-Chang;Park, Hyeong-Mu;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • In this paper, high quality silicon nitride film is achieved using Plasma Enhanced Chemical Deposition(PECVD) system, and applied in passivating PHEMT's. Passivated PHEMT's(60 ${\mu}{\textrm}{m}$$\times$2 fingers) showed an increase of 2.7 % and 3 % in the drain saturation current and the maximum transconductance, respectively. The current gain cut-off frequency of 53 ㎓ and maximum oscillation frequency of 105 ㎓ were obtained from the fabricated PHEMT's.

A Novel Large Area Negative Sputter Ion Beam source and Its Application

  • Kim, Steven
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.73-73
    • /
    • 1999
  • A large area negative metal ion beam source is developed. Kinetic ion beam of the incident metal ions yields a whole nucleation and growth phenomena compared to the conventional thin film deposition processes. At the initial deposition step one can engineer the surface and interface by tuning the energy of the incident metal ion beams. Smoothness and shallow implantation can be tailored according to the desired application process. Surface chemistry and nucleation process is also controlled by the energy of the direct metal ion beams. Each individual metal ion beams with specific energy undergoes super-thermodynamic reactions and nucleation. degree of formation of tetrahedral Sp3 carbon films and beta-carbon nitride directly depends on the energy of the ion beams. Grain size and formation of polycrystalline Si, at temperatures lower than 500deg. C is obtained and controlled by the energy of the incident Si-ion beams. The large area metal ion source combines the advantages of those magnetron sputter and SKIONs prior cesium activated metal ion source. The ion beam source produces uniform amorphous diamond films over 6 diameter. The films are now investigated for applications such as field emission display emitter materials, protective coatings for computer hard disk and head, and other protective optical coatings. The performance of the ion beam source and recent applications will be presented.

  • PDF

Phase change properties of BN doped GeSbTe films

  • Jang, Mun-Hyeong;Park, Seong-Jin;Park, Seung-Jong;Jeong, Gwang-Sik;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.226-226
    • /
    • 2010
  • Boron Nitride (BN) doped GeSbTe films were grown by the ion beam sputtering deposition (IBSD). The in-situ sheet resistance data and the x-ray diffraction patterns showed the crystallization is suppressed due to the BN incorporation. The phase change speed in BN doped GeSbTe films were investigated using the static tester equipped with nanosecond pulsed laser. The phase change speed for BN doped GST films become faster than the corresponding values for an undoped GST film. The Johnson-Mehl-Avrami(JMA) plot and Avrami coefficient for laser crystallization showed that the change in growth mode during the laser crystallization is a most important factor for the phase change speed in the BN doped GST films. The JMA results and the atomic force microscopy (AFM) images indicate that the origin of the change in the crystalline growth mode is due to an increase in the number of initial nucleation sites which is produced by the incorporated BN. In addition, the retension properties for the laser writing/erasing are remarkably improved in BN doped GeSbTe films owing to the stability of the incorporated BN.

  • PDF

The Effect of SiON Film on the Blistering Phenomenon of Al2O3 Rear Passivation Layer in PERC Solar Cell

  • Jo, Guk-Hyeon;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.364.1-364.1
    • /
    • 2014
  • 고효율 태양전지로 가기 위해서는 태양전지의 후면 패시베이션은 중요한 역할을 한다. 후면 패시베이션 막으로 사용되는 $Al_2O_3$ 막은 $Al_2O_3/Si$ 계면에서 높은 화학적 패시베이션과 Negative Fixed Charge를 가지고 있어 적합한 Barrier막으로 여겨진다. 하지만 이후에 전면 Metal paste의 소성 공정에 의해 $800^{\circ}C$이상 온도를 올려주게 됨에 따라 $Al_2O_3$ 막 내부에 결합되어 있던 수소들이 방출되어 blister가 생성되고 막 질은 떨어지게 된다. 우리는 blister가 생성되는 것을 방지하기 위한 방법으로 PECVD 장비로 SiNx를 증착하는 공정 중에 $N_2O$ 가스를 첨가하여 SiON 막을 증착하였다. SiON막은 $N_2O$가스량을 조절하여 막의 특성을 변화시키고 변화에 따라 소성시 막에 미치는 영향에 대하여 조사하였다. 공정을 위해 $156{\times}156mm2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type 단결정 실리콘 웨이퍼를 사용하였고, $Al_2O_3$ 막을 올리기 전에 RCA Cleaning 실행하였다. ALD 장비를 통해 $Al_2O_3$ 막을 10nm 증착하였고 RF-PECVD 장비로 SiNx막과 SiON막을 80nm 증착하였다. 소성로에서 $850^{\circ}C$ ($680^{\circ}C$) 5초동안 소성하고 QSSPC를 통해 유효 반송자 수명을 알아보았다.

  • PDF

A Study on the Characteristics of Ceramic Ball Bearing (세라믹 볼베어링의 특성해석에 관한 연구)

  • 김완두;한동철
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.64-72
    • /
    • 1992
  • The recent trends of rotating machinery demand high speed and high temperature operation, and the bearing with new material is required to be developed. Ceramic, especially silicon nitride, have been receiving attention as alternative material to conventional bearing steel. Ceramic ball bearing offers major performance advantages over steel bearing, for instance, high speed, maginal lubrication, high temperature, improved corrosion resistance and nonmagnetic capabilities etc.. In this paper, the mechanical characteristics of ceramic ball bearing (hybrid ceramic bearing and all ceramic bearing) were investigated, and the characteristics of ceramic bearing were compared with that of steel bearing. Deep groove ball bearing 6208 was taken the object of analysis. The main results of analysis were followings: the radial stiffness of hybrid and all ceramic bearing were 112% and 130% that of steel bearing, and the axial stiffness of all ceramic bearing was 110% that of steel bearing. According as rotating speed was up, the ball load, the contact angle, the contact stress and the spin-to-roll ratio between ball and raceway of ceramic bearing were far smaller than these of steel bearing. And there was not a significant difference between the minimum film thickness of ceramic bearing and steel bearing. It is expected that this research is contributed to enhanced fundamental technology for the practical applications of ceramic ball bearing.

Tribological characteristics of WC/C multilayer films with various environments (WC/C 박막 코팅의 환경변화에 따른 트라이볼로지적 특성)

  • 이은성;김석삼;김종국
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.78-87
    • /
    • 2001
  • The friction and wear behaviors of WC/C multilayer coating were investigated by using a pin on disk type tester. The experiment was conducted by using silicon nitride (S $i_{3}$ $N_{4}$) as a pin material and WC/C multilayer coating on bearing steel (STB2) as a disk material, under various environments that are atmospheric conditions of high vacuum( 1,3$\times$10$^{-4}$ Pa), medium vacuum( 1.3$\times$10$^{-l}$Pa). ambient air( 10$^{5}$ pa)(3 types) and relative humidity(2~98%) conditions. The results showed that WC/C coating fracture was suddenly increased with increasing degree of vacuum, because of high adhesion. So, WC/C coating could not be displayed their ability as solid lubricant. WC/C coating could be displayed better abilitv as solid lubricant with increasing relative humidity. because of oxide film, size and shape of wear debris. The friction coefficient and specific wear rate became better about RH 50%.%.

  • PDF

Effects of the Integrity of Silicon Thin Films on the Electrical Characteristics of Thin Dielectric ONO Film (실리콘 박막의 Integrity가 ONO(Oxide/Nitride/Oxide) 유전박막의 전기적 성질에 미치는 영향)

  • 김동원;라사균;이영종
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.360-367
    • /
    • 1994
  • Si2H6PH3 혼합기체를 사용하여 증착된 in-situ P-doped 비정질 실리콘과 SiH4 기체를사용하여 증착한후에 As+ 이온주입에 의해 도핑시킨 다결정 실리콘 박막을 하부 전극으로 하는 캐패시터를 형성 하였다. 여기서 유전박막층은 자연산화막 화학증착된 실리콘질화막 및 질화막의 산화에 의해 형성된 O-N-O 구조를 갖는 것이었다. 두 종류의 하부전극에 따른 캐패시터의 전기적 특서을 조사하였다. 전기 적 특성으로는 정전용량, 누설전류, 절연파괴전압 및 TDDB 등이었다. 이 가운데 정전용량, 누설전류 및 절연파괴전압은 하부전극에 따라 큰 차이를 보이지않았다. 그러나 음의 전장하에서의 TDDB 특성은 in-situ P-doped 비정실 실리콘이 하부전극인 캐패시터가 As+ 이온 주입실리콘이 하부전극인 것에 비해 더우수하였다. 이와 같은 TDDB 특성의 차이는 하부전극 실리콘의 integrity 차이로 인한 자연산화막의 결함 정도의 차이에 기인하는 것 같다. 이를 뒷받침하는 것으로 투과전자현미경 단면사진으로 확인하였 다. Shallow junction을 유지하는데도 in-situ P-doped 비정실 실리콘은 만족할 만한 결과를 보이며 박 막자체의 면저항값도 낮출 수 있어 초고집적 회로의 캐패시터 전극으로서 이용될 수 있는 것으로 평가 되었다.

  • PDF