• Title/Summary/Keyword: Nitric Oxides

Search Result 59, Processing Time 0.025 seconds

Effects of Particulate Matters on A549 and RAW 264.7 Cells (대도시의 입자상 물질이 A549와 RAW 264.7 세포에 미치는 영향)

  • Baak, Young-Mann;Kim, Ji-Hong;Kim, Kyoung-Ah;Ro, Chul-Un;Kim, Hyung-Jung;Lim, Young
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2001
  • Objectives : To investigate the effects of particulate matter (PM), a marker of environmental pollution derived from combustion sources, on lung epithelial cells (A549) and macrophage (RAW 264.7). Methods : The production of reactive radicals from lung cells, the lipid peroxidation of cell membrane, and the cytotoxicity of PM were measured using an in vitro model. The results were compared with a control group. Results : The presence of PM significantly increased the production of reactive oxygen species and reactive nitrogen species with time and in a dose dependent pattern and also increased the malondialdehyde concentration in lung epithelial cells. The cytotoxicity of PM was increased with increasing concentration of PM. Conclusions : It has been suggested that urban particulate matter causes an inflammatory reaction in lung tissue through the production of hydroxyl radicals, nitric oxides and numerous cytokines. The causal chemical determinant responsible for these biologic effects are not well understood, but the bioavailable metal in PM seems to determine the tonicity of inhaled PM.

  • PDF

Chromate Conversion Coating on 3D Printed Aluminum Alloys (3D 프린팅으로 제조한 알루미늄 합금의 크로메이트 코팅)

  • Shin, Hong-Shik;Kim, Hyo-Tae;Kim, Ki-Seung;Choi, Hye-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • The demand for metal 3D printing technology is increasing in various industries. The materials commonly used for metal 3D printing include aluminum alloys, titanium alloys, and stainless steel. In particular, for applications in the aviation and defense industry, aluminum alloy 3D printing parts are being produced. To improve the corrosion resistance in the 3D printed aluminum alloy outputs, a post-treatment process, such as chromate coating, should be applied. However, powdered materials, such as AlSi7Mg and AlSi10Mg, used for 3D printing, have a high silicon content; therefore, a suitable pretreatment is required for chromate coating. In the desmut step of the pretreatment process, the chromate coating can be formed only when a smut composed of silicon compounds or oxides is effectively removed. In this study, suitable desmut solutions for 3D printed AlSi7Mg and AlSi10Mg materials with high silicon contents were presented, and the chromate coating properties were studied accordingly. The smut removal effect was confirmed using an aqueous desmut solution composed of sulfuric, nitric, and hydrofluoric acids. Thus, a chromate coating was successfully formed. The surfaces of the aluminum alloys after desmut and chromate coating were analyzed using SEM and EDS.

Development of a Laser Absorption NO/$NO_2$ Measuring System for Gas Turbine Exhaust Jets

  • Zhu, Y.;Yamada, H.;Hayashi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.802-806
    • /
    • 2004
  • For the protection of the local air quality and the global atmosphere, the emissions of trace species including nitric oxides (NO and NO$_2$) from gas turbines are regulated by local governments and by the International Civil Aviation Organization. In-situ measurements of such species are needed not only for the development of advanced low-emission combustion concepts but also for providing emissions data required for the sound assessment of the effects of the emissions on environment. We have been developing a laser absorption system that has a capability of simultaneous determination of NO and NO$_2$concentrations in the exhaust jets from aero gas turbines. A diode laser operating near 1.8 micrometer is used for the detection of NO while a separated visible tunable diode laser operating near 676 nanometers is used for NO$_2$. The sensitivities at elevated temperature conditions were determined for simulated gas mixtures heated up to 500K in a heated cell of a straight 0.5 m optical path. Sensitivity limits estimated as were 30 ppmv-m and 3.7 ppmv-m for NO and NO$_2$, respectively, at a typical exhaust gas temperature of 800K. Experiments using the simulated exhaust flows have proven that $CO_2$ and $H_2O$ vapor - both major combustion products - do not show any interference in the NO or NO$_2$ measurements. The measurement system has been applied to the NO/NO$_2$ measurements in NO and NO$_2$ doped real combustion gas jets issuing from a rectangular nozzle having 0.4 m optical path. The lower detection limits of the system were considerably decreased by using a multipass optical cell. A pair of off-axis parabola mirrors successfully suppressed the beam steering in the combustion gas jets by centralizing the fluctuating beam in sensor area of the detectors.

  • PDF

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019 (대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례 )

  • Hyeonsik Choe;Wonbae Jeon;Dongjin Kim;Chae-Yeong Yang;Jeonghyeok Mun;Jaehyeong Park
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.503-520
    • /
    • 2023
  • In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

Effect of High-Temperature Post-Oxidation Annealing in Diluted Nitric Oxide Gas on the SiO2/4H-SiC Interface (4H-SiC와 산화막 계면에 대한 혼합된 일산화질소 가스를 이용한 산화 후속 열처리 효과)

  • In kyu Kim;Jeong Hyun Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.101-105
    • /
    • 2024
  • 4H-SiC power metal-oxide-semiconductor field effect transistors (MOSFETs) have been developed to achieve lower specific-on-resistance (Ron,sp), and the gate oxides have been thermally grown. The poor channel mobility resulting from the high interface trap density (Dit) at the SiO2/4H-SiC interface significantly affects the higher switching loss of the power device. Therefore, the development of novel fabrication processes to enhance the quality of the SiO2/4H-SiC interface is required. In this paper, NO post-oxidation annealing (POA) by using the conditions of N2 diluted NO at a high temperature (1,300℃) is proposed to reduce the high interface trap density resulting from thermal oxidation. The NO POA is carried out in various NO ambient (0, 10, 50, and 100% NO mixed with 100, 90, 50, and 0% of high purity N2 gas to achieve the optimized condition while maintaining a high temperature (1,300℃). To confirm the optimized condition of the NO POA, measuring capacitance-voltage (C-V) and current-voltage (I-V), and time-of-flight secondary-ion mass spectrometry (ToF-SIMS) are employed. It is confirmed that the POA condition of 50% NO at 1,300℃ facilitates the equilibrium state of both the oxidation and nitridation at the SiO2/4H-SiC interface, thereby reducing the Dit.

Facile Separation of Zinc Oxalate to Oxalate and its Conversion to Glycolic Acid via Electrochemical Reduction (ZnC2O4의 Oxalate로의 효과적 분리 및 이의 전기화학적 환원을 통한 글리콜산으로의 전환)

  • Sunmi Im;Yiseul Park
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • Oxalic acid has been traditionally obtained via the oxidation of carbohydrates using nitric acid and catalysts. However, this process produces a variety of nitrogen oxides during oxidation and requires a separation process due to its various intermediates. These products and additional steps increase the harmfulness and complexity of the process. Recently, the electrochemical reduction of carbon dioxide into oxalic acid has been suggested as an environmentally friendly and efficient technology for the production of oxalic acid. In this electrochemical conversion system, zinc oxalate (ZnC2O4) is obtained by the reaction of Zn2+ ions produced by Zn oxidation and oxalate ions produced by CO2 reduction. ZnC2O4 can then be converted to form oxalic acid, but this requires the use of a strong acid and heat. In this study, a system was proposed that can easily convert ZnC2O4 to oxalic acid without the use of a strong acid while also allowing for easy separation. In addition, this proposed system can also further convert the products into glycolic acid which is a high-value-added chemical. ZnC2O4 was effectively separated into Zn(OH)2 powder and oxalate solution through a chemical treatment and a vacuum filtration process. Then the Zn(OH)2 and oxalate were electrochemically converted to zinc and glycolic acid, respectively.

Measurement and analysis of tractor emission during plow tillage operation

  • Jun-Ho Lee;Hyeon-Ho Jeon;Seung-Min Baek;Seung-Yun Baek;Wan-Soo Kim;Yong-Joo Kim;Ryu-Gap Lim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.383-394
    • /
    • 2023
  • In Korea, the U.S. Tier-4 Final emission standards have been applied to agricultural machinery since 2015. This study was conducted to analyze the emission characteristics of agricultural tractors during plow tillage operations using PEMS (portable emissions measurement systems). The tractor working speed was set as M2 (5.95 km/h) and M3 (7.60 km/h), which was the most used gear stage during plow tillage operation. An engine idling test was conducted before the plow tillage operation was conducted because the level of emissions differed depending on the temperature of the engine (cold and hot states). The estimated level of emissions for the regular area (660 m2), which was the typical area of cultivation, was based on an implement width of 2.15 m and distance from the work area of 2.2 m. As a result, average emission of CO (carbon monoxide), THC (total hydrocarbons), NOx (nitric oxides), and PM (particulate matter) were approximately 6.17×10-2, 3.36×10-4, 2.01×10-4, and 6.85×10-6 g/s, respectively. Based on the regular area, the total emission of CO, THC, NOx, and PM was 2.62, 3.76×10-2, 1.63, and 2.59×10-4 g, respectively. The results of total emission during plow tillage were compared to Tier 4 emission regulation limits. Tier 4 emission regulation limits means maximum value of the emission per consumption power (g/kWh), calculated as ratio of the emission and consumption power. Therefore, the total emission was converted to the emission per power using the rated power of the tractor. The emission per power was found to be satisfied below Tier 4 emission regulation limits for each emission gas. It is necessary to measure data by applying various test modes in the future and utilize them to calculate emission because the emission depends on various variables such as measurement environment and test mode.

Effects of Gardenia jasminoides Ellis Peel Extract in Namhae Korea on the Bioactivity Compounds and Lipid Peroxidation Inhibition Activity (남해산 치자(Gardenia jasminoides Ellis fructus) 껍질의 생리활성 및 지질과산화 저해 활성에 미치는 영향)

  • Jin, Dong-Hyeok;Oh, Da-Young;Kang, Dong-Soo;Lee, Young-Geun;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.263-272
    • /
    • 2018
  • The object of this study was to measure the bioactivity and lipid peroxidation inhibition activity of peel from Gardenia jasminoides Ellis fructus (GJE) in Namhae Korea. The amount of phytic acid was also determined. Extraction was performed using three solvents, CM (choloform:methanol, 2:1, v/v), n-butanol and 70% ethanol. To investigate by the solvent extract of total phenol content and value as a functional food ingredient of GJE peel through nitrogen oxide scavenging activity, antioxidant activity, reducing power and lipid peroxidation inhibition were performed. The bioactivities of the extract solvents increased significantly with increasing concentrations (0.2, 0.4, 0.6 mg/mL, p<0.05). The total phenol contents of GJE peel extracts were highest in CM ($39.74{\pm}0.15mg\;CAE/g$) extract. The order of total phenol contents, antioxidant activity and reducing power of the solvents in the GJE peel were the same, in the analysis of nitrogen oxides scavenging activity and lipid peroxidation inhibition, it was confirmed the results were inconsistent. As a result, the GJE peel showed excellent bioactivities. Considering the extraction yield and various physiological activities, it is considered that efficiency is better when extracted from CM and 70% ethanol extracts.

Aquaporin in bleomycin induced lung injury (급성 폐손상 동물모델에서 aquaporin 수분통로의 발현)

  • Jang, An-Soo;Park, Jong-Sook;Lee, June-Hyuk;Park, Sung-Woo;Kim, Do-Jin;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Background : Aquaporins (AQPs) may play a role in the pathogenesis of pulmonary inflammation and edema. This study investigated the role ofAQPs in acute lung injury following bleomycin inhalation in rats. Methods : Sprague-Dawley rats were treated via inhalation with 10 U/kg bleomycin hydrochloride dissolved in 5 ml of normal saline. The control rats were treated with 5 ml normal saline. The animals (n = 6-8 rats per group) were sacrificed at 4, 7, and 14 d. The changes in AQP1, AQP4, and AQP5 expression levels over time were analyzed by Western blotting. The nitrate and nitrite concentrations in the bronchoalveolar lavage fluid (BALF) were measured using a modified Griess reaction. ELISA was used to check cytokines. Results : The respiration rates were significantly higher 4 and 7 days after the bleomycin treatment compared with those of the control rats. The tidal volume was lower in rats at 4 days after the bleomycin treatment, and the wet/dry weights of the lung were significantly higher than those of the control group. The nitrite and nitrate concentrations in the BALF from the rats at 4 days after exposure to bleomycin were greater than those from the saline-treated rats. Immunoblotting studies demonstrated that the AQP1 and AQP4 expression levels were lower in the rats at 4 days. However, the AQP4 expression level was higher at 7 days. The AQP5 expression level increased at 4, 7 and 14 days after the bleomycin treatment. Conclusion : This study demonstrates that AQPs are expressed differently in bleomycin-induced pulmonary edema.