• 제목/요약/키워드: Nitric Oxide formation

검색결과 268건 처리시간 0.028초

Function and regulation of nitric oxide signaling in Drosophila

  • Sangyun Jeong
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100006.1-100006.10
    • /
    • 2024
  • Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.

Impaired Endothelium-Dependent Relaxation is Mediated by Reduced Production of Nitric Oxide in the Streptozotocin-Induced Diabetic Rats

  • Park, Kyoung-Sook;Kim, Cuk-Seong;Kang, Sang-Won;Park, Jin-Bong;Kim, Kwang-Jin;Chang, Seok-Jong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.263-270
    • /
    • 2000
  • To evaluate the involvement of nitric oxide production on the endothelium-dependent relaxation in diabetes, we have measured vascular and endothelial function and nitric oxide concentration, and the expression level of endothelial nitric oxide synthase in the streptozotocin-induced diabetic rats. Diabetic rats were induced by the injection of streptozotocin (50 mg/kg i.v.) in the Sprague-Dawley rats. Vasoconstrictor responses to norepinephrine (NE) showed that maximal contraction to norepinephrine $(10^{-5}\;M)$ was significantly enhanced in the aorta of diabetic rats. Endothelium-dependent relaxation induced by acetylcholine was markedly impaired in the aorta of diabetic rats, these responses were little improved by the pretreatment with indomethacin. However, endothelium-independent relaxation induced by nitroprusside was not altered in the diabetic rats. Plasma nitrite and nitrate $(NO_2/_3)$ levels in diabetic rats were significantly lower than in non-diabetic rats. Western blot analysis using a monoclonal antibody against endothelial cell nitric oxide synthase (eNOS) revealed that the protein level was lower in the aorta of diabetic rats than in non-diabetic rats. These data indicate that nitric oxide formation and eNOS expression is reduced in diabetes, and this would, in part, account for the impaired endothelium-dependent relaxation in the aorta of streptozotocin-induced diabetic rats.

  • PDF

Impact of Physiological Stresses on Nitric Oxide Formation by Green Alga, Scenedesmus obliquus

  • Mallick, Nirupama;Mohn, Friedrich-Helmuth;Rai, Lalchand;Soeder, Carl-J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.300-306
    • /
    • 2000
  • The rate of apparent nitric oxide (NO) release, as measured in the exhaust gas of green alga, Scenedesmus obliquus, depended on the light intensity and pH. It doubled after lowering the temperature from $25^{\circ}C{\;}to{\;}15^{\circ}C$ and strongly decreased from $35^{\circ}C{\;}to{\;}42^{\circ}C$. The Scenedesmus cells, deficient in nitrogen or phosphorus, demonstrated a significant increase in NO production following their transfer to nitrate- and phosphate-rich media. The addition of herbicides (DCMU and glyphosate) or toxic concentrations of $Cu^{2+}{\;}or{\;}Fe^{3+}$ produced strong NO peaks, resembling those that occurred after sudden darkening. An increase in the $Ni^{2+}$ concentration to 20 ppm resulted in a gradual increase of NO release from the initial ~1.5 ppbv to>20 ppbv, whereas $Cd^{2+}$ instantaneously suppressed the NO by the cultures of Scenedesmus was not altered by L-NNA, an inhibitor of nitric oxide synthase (NOS), or by its substrate, L-arginine. This seems to exclude the role of NOS in the NO formation under study. Accordingly, it can be assumed that the rate of NO formation is mainly a function of dynamic nitrite pool sizes and environmental factors significantly affect the NO production in algae.

  • PDF

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구 (Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • 제15권3호
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Durability of Photocatalytic Cement after Nitric Oxide-Wet-Dry Cycling

  • Lee, Bo Yeon;Kurtis, Kimberly E.
    • 한국건축시공학회지
    • /
    • 제14권4호
    • /
    • pp.359-368
    • /
    • 2014
  • Photocatalytic cement has been receiving attention due to its high oxidation power that reduces nitrogen oxide, thus contributing to a clean atmospheric environment. However, there has not yet been a thorough investigation on the effect of photocatalytic reactions on the durability of cementitious material, the parent material. In this study, photocatalytic cement samples were exposed to nitric oxide gas and UV along with cycles of wetting and drying to simulate environmental conditions. The surface of samples was characterized mechanically, chemically, and visually during the cycling. The results indicate that that the photocatalytic efficiency decreased with continued NO oxidation. The pits found from SEM indicated that chemical deterioration, such as acid attack or leaching, did occur. However, this was not confirmed by X-ray diffraction. The hardness was not affected, probably due to the formation of CSH as evidenced by the XRD pattern. In conclusion, it was found that photocatalysis could alter cementitious materials both chemically and mechanically, which could further affect long-term durability.

Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향 (The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells)

  • 안중현;송정섭
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권2호
    • /
    • pp.172-183
    • /
    • 1999
  • 연구배경: 산화질소(${\cdot}NO$)는 여러 세포에서 산화질소 합성효소(NOS)에 의해서 생산되며 다양한 병태생리과정에 관여한다. 여러 cytokine들이 iNOS의 발현을 촉진시키고 산화질소 생산을 증가시킴으로써 염증반응을 증폭시키고 세포와 조직손상을 초래한다고 알려진 바, 과산화수소($H_2O_2$)가 세포내 NOS의 발현과 산화질소형성에 미치는 영향을 알아보고자 하였다. 방법: 마우스 대식세포주 RAW264.7에 여러 가지 cytokine과 세균 내독소 (LPS)로 자극을 준 세포군 이에 더하여 $H_2O_2$, NOS 억제제 (L-NAME) 및 항산화제 (catalase)등을 사용하여 세포를 자극한 후 생성된 산화질소 산화물의 농도를 측정하고 Northern analysis로 iNOS mRNA의 발현정도를 보아 다음과 같은 성적을 얻었다. 결과: Cytokine과 LPS 자극군에서 대조군보다 ${\cdot}NO$ 생산이 높았고, 이 자극군에 $H_2O_2$를 추가로 자극하였을 때 ${\cdot}NO$생산이 2 배 이상 유의하게 높았다. Cytokine 자극군에서 $H_2O_2$의 자극 농도에 따른 ${\cdot}NO$생산은 $H_2O_2$의 농도가 증가할수록 유의하게 증가하였다. LPS와 IFN-$\gamma$ 자극군에서 L-NAME을 같이 자극시에 ${\cdot}NO$의 양은 L-NAME의 농도증가에 따라 유의하게 감소하였고, Cytokine 및 $H_2O_2$자극군에서도 추가로 자극한 L-NAME 의 농도증가에 따라 ${\cdot}NO$의 양은 유의하게 감소하였다. Cytokine과 $H_2O_2$ 자극균에 catalase를 같이 자극 하였을 때 ${\cdot}NO$의 양은 유의하게 감소했고, Mercaptoethanol과 phenanthroline을 전처치하고 LPS와 IFN-$\gamma$$H_2O_2$로 자극한 군에서 이들의 전처치한 농도가 높을수록 ${\cdot}NO$의 양은 유의하게 Cytokine자극군과 IFN-$\gamma$, LPS 자극군에 $H_2O_2$를 추가 자극 후 Northern analysis 결과 $H_2O_2$는 iNOS mRNA 발현을 현저히 증가시켰다. 결론: 이상의 결과로 과산화수소가 cytokine과 내독소 등으로 자극된 마우스 대식세포에서 산화질소생산에 유의한 증폭효과를 나타냈고, iNOS mRNA 의 발현도 증가시켰음을 확인할 수 있었다.

  • PDF

산업용 고부하버너 연소에서의 $NO_x$ 형성 및 저감에 관한 연구(I)-레이저 유도 형광법(LIF)를 이용한 이중선회 확산화염의 NO 농도 분포 측정- (A Study on Nitric Oxide Formation & Reduction in Industrial Burner (I) -NO Concetration-Distribution in Double Swirling Diffusion Flame by LIF-)

  • 박경석;김경수
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.379-386
    • /
    • 2001
  • 본 연구는 산업용 고부하 버너연소에서의 NO$_{x}$ 저감에 관한 실험적 연구이다. 본 연구에서는 NO$_{x}$의 정량적 농도 분포 측정을 위하여 레이저 유동 형광법을 사용하였다. XeCL 엑시머 레이저를 사용하여 NO A-X (0, 0) 진동밴드를 226 nm로 여기하였다. 또한 P$_{21}$+Q$_1$(14.5)/R$_{12}$+Q$_2$(20.5)/P$_1$(23.5) 전이를 여기라인으로 하였으며 다른 간섭의 영향을 최소화 하였다. 본 실험에서 이중선회 확산화염에서의 NO 농도 분포를 측정하였으며, 이 스월버너에서의 화염의 후류에 있어서 NO 농도는 1차/2차 공기비가 증가할 때 감소함을 알수 있었다.

  • PDF

Saururus chinenesis Extracts Scavenge Reactive Oxygen Species and Modulate Nitric Oxide Production in Raw 264.7 Macrophages

  • Oh, Jang-Hee;Shon, Hee-Kyoung;Oh, Moon-You;Chung, An-Sik
    • Toxicological Research
    • /
    • 제18권2호
    • /
    • pp.117-127
    • /
    • 2002
  • Saururus chinensis Baill has been used in Korean folk medicine for the treatment of various diseases such as edema, Jaundice, and furuncle. The components of this plant were extracted into four fraction. Among the four fraction, hexane and ethyl acetate fraction were highly toxic to 3T3 mouse embryo fibroblast and Raw 264.7 mouse macrophage, but n-butanol and residue fraction did not show any toxic effect to those cell lines. n-Butanol and residue fraction exhibited antioxidant effects on hydro-gen peroxide, hydroxyl radical, and superoxide anion directly in vitro and in the 3T3 fibroblasts. All the four fractions inhibited lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) formation. In addition, n-butanol and residue fraction showed inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide production, and also down-regulated inducible nitric oxide synthase (iNOS) mRNA transcription 6 h after LPS stimulation in Raw 204.7 cells. Only n-butanol fraction, which mainly consists of flavonoids, inhibited NF-kB activation by decreasing IkBa degradation 90 min after LPS stimulation. horn the results, it is suggested that this plant could be a good candidate material for drug development based on its antioxidant and/or anti-inflammatory constituents.

Luteolin and Chicoric Acid, Two Major Constituents of Dandelion Leaf, Inhibit Nitric Oxide and Lipid Peroxide Formation in Lipopolysaccharide-Stimulated RAW 264.7 Cells

  • Park, Chung-Mu;Park, Ji-Young;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제15권2호
    • /
    • pp.92-97
    • /
    • 2010
  • Luteolin and chicoric acid are the most abundant phytochemicals in dandelion (Taraxacum officinale) leaf. In this study, four kinds of extraction methods [hot water, ambient temperature (AT) water, ethanol, and methanol] were applied to analyze the contents of both phytochemicals and verify their anti-inflammatory and antioxidative activities. The methanol extract showed the most potent nitric oxide (NO) inhibitory effect. The luteolin and chicoric acid concentrations were 3.42 and $12.86\;{\mu}g/g$ dandelion leaf in the methanol extract. The NO-suppressive effect of luteolin and chicoric acid was identified in a dose-dependent manner with $IC_{50}$ values of $21.2\;{\mu}M$ and $283.6\;{\mu}M$, respectively, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells without cytotoxicity. Malondialdehyde (MDA) concentration, as an index for free radical injury on cell membrane, was also dose-dependently inhibited by the two compounds. The suppressive effect was further examined using mRNA and protein expression levels, which were attributable to the inhibition of inducible nitric oxide synthase (iNOS). These results suggest that two phytochemicals in dandelion leaf, luteolin and chicoric acid, may play an important role in the amelioration of LPS-induced oxidative stress and inflammation.