• 제목/요약/키워드: Nitric Oxide(No)

검색결과 2,940건 처리시간 0.035초

Flavonoids Differentially Modulate Nitric Oxide Production Pathways in Lipopolysaccharide-Activated RAW264.7 Cells

  • Kim Ae Ra;Cho Jae Youl;Zou Yani;Choi Jae Sue;Chung Hae Young
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.297-304
    • /
    • 2005
  • Naturally occurring flavonoids are known to modulate various inflammatory and immune processes. Based on structural property, in this study, molecular mechanism of flavonoids in modulating nitric oxide (NO) production and its signaling pathway were investigated using lipopolysaccharide (LPS)-activated RAW264.7 cells. Although flavonol-typed flavonoids (kaempferol and quercetin) more potently scavenged reactivity of nitric oxide ($\cdot$NO) as well as peroxynitrite (ONOO$\kappa$) than isoflavones (genistein and genistin), kaempferol, quercetin and genistein showed a little difference in inhibition of both inducible NO synthase expression and NO production, with IC$_{50}$ values of 13.9, 20.1 and 26.8 $\mu$M. However, there was a striking pattern related to structural feature in modulation of LPS-mediated signaling pathways. Thus, flavonols only inhibited transcription factor AP-1 activation, whereas isoflavones suppressed the DNA binding activation of NF-$\kappa$B and C/EBP$\beta$. Therefore, these data suggest that structural feature may be linked to decide drugs target molecule in LPS-mediated signaling pathways, rather than its potency.

Anti-inflammatory Properties of Meso-dihydroguaiaretic Acid in Lipopolysaccharide-induced Macrophage

  • Kim, Yong-Jae;Kang, Yeo-Jin;Kim, Tack-Joong
    • Biomedical Science Letters
    • /
    • 제16권2호
    • /
    • pp.91-95
    • /
    • 2010
  • Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the bark of Machilus thunbergii Sieb. et Zucc. (Lauraceae). It exhibits a neuroprotective effect and also exerts cytotoxicity to certain cancer cells. In the present study, we investigated whether or not MDGA inhibits inflammatory reaction through the inhibition of nitric oxide (NO) generation. The results showed that MDGA (5~$25 {\mu}M$) inhibited 100 ng/ml lipopolysaccharide (LPS)- induced NO generation in macrophage Raw 264.7 cells in a concentration-dependent manner. We also measured the cytotoxic effects of MDGA on Raw 264.7 cells and found no evidence of cytotoxicity. The inhibition of NO generation by MDGA was consistent with the inhibitory effect on the expression of inducible nitric oxide synthase (iNOS). In addition, MDGA inhibited the LPS-induced gene expression of $interleukin-1{\beta}$ $(IL-1{\beta})$ as well as tumor necrosis $factor-{\alpha}$ $(TNF-{\alpha})$. The present results may provide that MDGA has anti-inflammatory properties through inhibition of the toll-like receptors (TLRs) pathway, and suggest that MDGA can be used as an anti-inflammatory agent.

Antibacterial and Nitric Oxide Production Inhibitory Activities of Prunus sargentii Branches Extract and Its Fractions against Pathogens of Acne (산벚나무 가지 추출물 및 용매 분획물의 Nitric Oxide 생성 억제 효과와 여드름 원인균에 대한 항균활성)

  • Yang, Sun A;Pyo, Byoung Sik;Kim, Sun Min
    • Korean Journal of Medicinal Crop Science
    • /
    • 제24권2호
    • /
    • pp.129-135
    • /
    • 2016
  • Background: In this study, we investigated the antibacterial and nitric oxide (NO) production inhibitory activities of 75% ethanol extract of Prunus sargentii branches and its fractions against acne pathogens. Methods and Results: The antibacterial activity against acne causing pathogens was determined using the disc diffusion assay. The ethyl acetate fraction showed higher activities against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis than those shown by other fractions. In the DPPH radical and NO scavenging assays, the butanol fraction showed strong DPPH radical and NO scavenging abilities. These activities were related to the total polyphenol and flavonoid contents of butanol fraction. On the other hand, the chloroform and ethyl acetate fractions exhibited the highest NO production inhibitory activity in Lipopolysaccharide (LPS)-stimulated Raw 264.7 cells compared to those exhibited by other fractions. Conclusions: The extract and its ethyl acetate fraction from the branches of P. sargentii exhibited antibacterial activity and could be used as functional materials in antimicrobial related fields. Moreover, the chloroform and ethyl acetate fractions are potential antiinflammatory agents and butanol fraction acts as an effective radical scavenger.

Anti-Inflammatory Effect of Extracts from Ligustrum obtusifolium S. fruits in RAW 264.7 Macrophages (RAW 264.7 대식세포 내에서 남정목 열매 추출물의 항염증 효과)

  • Moon, Ju-Ho;Go, Heung;Shin, Seon-Mi;Kim, Ki-Tae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • 제17권3호
    • /
    • pp.263-273
    • /
    • 2013
  • Objectives This study was designed to investigate the anti-inflammatory effect of extracts from Ligustrum obtusifolium S. fruits(LOF) in RAW 264.7 Macrophages stimulated with lipopolysaccharide(LPS). Methods We examined productions of nitric oxide(NO), reactive oxygen species(ROS), inducible isoforms of NO synthase(iNOS), cyclooxygenase-2(COX-2) to investigate the anti-inflammatory effect of LOF extracts. In addition, we measured generation of pro-inflammatory cytokines(TNF-${\alpha}$, IL-6). Results Cell viability showed that LOF extracts had no cytotoxicity in Raw 264.7 cells. The treatment with LOF extracts significantly decreased the generation of NO and pro-inflammatory cytokines(TNF-${\alpha}$, IL-6) in LPS-stimulated macrophage cells. Furthermore LOF extracts inhibited intracellular ROS generation dose dependently and reduced the expression of iNOS, COX-2 proteins. Conclusions These results showed that the LOF extracts had an anti-inflammatory effect on LPS-stimulated Raw 264.7 cells. These findings provide scientific support for the use of this Ligustrum obtusifolium S. for inflammatory-related diseases.

Nitric Oxide-induced Protein S-nitrosylation Causes Mitochondrial Dysfunction and Accelerates Post-ovulatory Aging of Oocytes in Cattle

  • Niu, Ying-Jie;Zhou, Dongjie;Zhou, Wenjun;Nie, Zheng-Wen;Kim, Ju-Yeon;Oh, YoungJin;Lee, So-Rim;Cui, Xiang-Shun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • 제35권1호
    • /
    • pp.102-111
    • /
    • 2020
  • Nitric oxide (NO)-induced protein S-nitrosylation triggers mitochondrial dysfunction and was related to cell senescence. However, the exact mechanism of these damages is not clear. In the present study, to investigate the relationship between in vitro aging and NO-induced protein S-nitrosylation, oocytes were treated with sodium nitroprusside dihydrate (SNP), and the resultant S-nitrosylated proteins were detected through biotin-switch assay. The results showed that levels of protein S-nitroso thiols (SNO)s and expression of S-nitrosoglutathione reductase (GSNOR) increased, while activity and function of mitochondria were impaired during oocyte aging. Addition of SNP, a NO donor, to the oocyte culture led to accelerated oocyte aging, increased mitochondrial dysfunction and damage, apoptosis, ATP deficiency, and enhanced ROS production. These results suggested that the increased NO signal during oocyte aging in vitro, accelerated oocyte degradation due to increased protein S-nitrosylation, and ROS-related redox signaling.

The Hyperthermic Effect of Nitric Oxide in Central Nervous System

  • Jung, Jae-Kyung;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.93-98
    • /
    • 2001
  • The precise mechanism of set-point regulation in hypothalamus was not elucidated. Nitric oxide synthases(NOS) were detected in hypothalamus, however, the roles of NO in hypothalamus was not fully studied. So, we tested the effects of NO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. NO donor sodium nitroprusside (SNP, 4 nmol, i.c.v.) elicited marked febrile response, and this febrile response was completely blocked by indomethacin (a cyclooxygenase inhibitor). But, ODQ (selective guanylate cyclase inhibitor, $50\;{\mu}g,$ i.c.v.) did not inhibit fever induced by SNP. The cyclic GMP analogue dibutyryl-cGMP $(100\;{\mu}g,\;i.c.v.)$ induced significant pyreses, which is blocked by indomethacin. $N^G-nitro-L-arginine$ methyl ester (L-NAME, non selective NOS inhibitor) inhibited fever induced by $interleukin-1{\beta}\;(IL-1{\bata},\;10\;ng,\;i.c.v.),$ one of endogenous pyrogens. These results indicate that NO may have an important role, not related to stimulation of soluble guanylate cyclase, in the signal pathway of thermoregulation in hypothalamus.

  • PDF

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제28권1호
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Effects of acute reducing salt supplementation on cardio-respiratory function, blood pressure and serum nitric oxide production in elite players

  • Kim, Hag-Lyeol;Ueda, Hideo;Son, Yeon-Hee;Lee, Sam-Jun;Kim, In-Cheol
    • Korean Journal of Exercise Nutrition
    • /
    • 제14권2호
    • /
    • pp.95-101
    • /
    • 2010
  • The purpose of this study was to evaluate changes of body composition, cardio-respiratory function in ventilation threshold (VT) and maximal state exercise, systolic (SBP) and diastolic blood pressure (DBP) and serum nitric oxide (NO) production during acute reducing salt (RS) supplementation in college elite athletes. Variables of cardio-respiratory function during rest, ventilation threshold and maximal exercise was not shown a significantly difference between RS supplementation and non-supplementation, there was shown a significant increase in ventilation threshold time (p<0.05) and exhaustion time (p<0.05) during RS supplement compared to non-supplement. SBP and DBP were not shown a significant difference between RS supplement and non-supplement. This result suggests that acute intake of RS is not increased a blood pressure. Serum NO production was not significant difference in the RS supplement group, but it was shown a significantly increased levels (p<0.01, vs. recovery 30 min.) immediately after maximal exercise in the non-supplement group. This result suggests that acute intake of RS have important role in inhibition of serum NO production during maximal exercise. Conclusively, This study suggest that acute intake of RS was not influence in body composition variables, but it was positive effect in ventilation threshold time, exhaustion time, maintenance of blood pressure and inhibition of serum NO production in maximal treadmill exercise.

Inhibitory effects of ethanol extract from Vicia amoena on LPS(Lipopolysaccharide) induced nitric oxide and prostaglandin E2 production in RAW264.7 macrophage cell (갈퀴나물 에탄올 추출물의 RAW264.7 대식세포에서 LPS(Lipopolysaccharide)로 유도된 nitric oxide 및 prostaglandin E2 생성 저해효과)

  • Nam, Jung-Hwan;Park, Soo-Jin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • 제9권6호
    • /
    • pp.443-450
    • /
    • 2019
  • Vicia amoena has traditionally been used to treat disease of rheumatism, arthralgia, muscular paralysis, abscess and eczema, and it has anti-inflammatory properties. However, validity of the anti-inflammatory activity has not been scientifically in vestige acted so far. Therefore, the aim of this study was to investigate the anti-inflammatory potential of V. amoena using the ethanolic extract. To evaluate the anti-inflammatory effects, we examined the inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) on RAW264.7 cells. Our results indicated that ethanolic extract of V. amoena significantly inhibited the LPS-induced NO and PGE2 production in RAW264.7 cells. The ethanolic extract of V. amoena has inhibited the PGE2 production by 88.0±0.8 % at the concentration of 40㎍/ml. This results showed that ethanol extract of V. amoena is expected to be a good candidate for development into source of inflammation inhibitor

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • 제2권2호
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.