Flavonoids Differentially Modulate Nitric Oxide Production Pathways in Lipopolysaccharide-Activated RAW264.7 Cells

  • Kim Ae Ra (College of Pharmacy, Pusan National University) ;
  • Cho Jae Youl (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Zou Yani (College of Pharmacy, Pusan National University) ;
  • Choi Jae Sue (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Chung Hae Young (College of Pharmacy, Pusan National University)
  • Published : 2005.03.01

Abstract

Naturally occurring flavonoids are known to modulate various inflammatory and immune processes. Based on structural property, in this study, molecular mechanism of flavonoids in modulating nitric oxide (NO) production and its signaling pathway were investigated using lipopolysaccharide (LPS)-activated RAW264.7 cells. Although flavonol-typed flavonoids (kaempferol and quercetin) more potently scavenged reactivity of nitric oxide ($\cdot$NO) as well as peroxynitrite (ONOO$\kappa$) than isoflavones (genistein and genistin), kaempferol, quercetin and genistein showed a little difference in inhibition of both inducible NO synthase expression and NO production, with IC$_{50}$ values of 13.9, 20.1 and 26.8 $\mu$M. However, there was a striking pattern related to structural feature in modulation of LPS-mediated signaling pathways. Thus, flavonols only inhibited transcription factor AP-1 activation, whereas isoflavones suppressed the DNA binding activation of NF-$\kappa$B and C/EBP$\beta$. Therefore, these data suggest that structural feature may be linked to decide drugs target molecule in LPS-mediated signaling pathways, rather than its potency.

Keywords

References

  1. Agullo, G., Gamet-Payrastre, L., Manenti, S., Viala, C., Remesy, C., Chap, H., and Payrastre, B., Relationship between flavonoid structure and inhibition of phosphatidylinositol 3- kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem. Pharmacol., 53, 1649-1657 (1997) https://doi.org/10.1016/S0006-2952(97)82453-7
  2. Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya, M., and Fukami, Y., Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem., 262: 5592-5595 (1987)
  3. Carter, A. B., Knudtson, K. L., Monick, M. M., and Hunninghake, G. W., The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J. Biol. Chem., 274, 30858- 30863 (1999a) https://doi.org/10.1074/jbc.274.43.30858
  4. Carter, A. B., Monick, M. M., and Hunninghake, G. W., Both Erk and p38 kinases are necessary for cytokine gene transcription. Am. J. Respir. Cell Mol. Biol., 20, 751-758 (1999b) https://doi.org/10.1165/ajrcmb.20.4.3420
  5. Cho, J. Y., Kim, P. S., Park, J., Yoo, E. S., Baik, K. U., Kim, Y. K., and Park, M. H., Inhibitor of tumor necrosis factor-alpha production in lipopolysaccharide-stimulated RAW264.7 cells from Amorpha fruticosa. J. Ethnopharmacol., 70, 127-133 (2000) https://doi.org/10.1016/S0378-8741(99)00154-3
  6. Cho, J. Y., Kim, P. S., Park, J., Chae, S. H., Yoo. E. S., Baik, K. U., and Park, M. H., Inhibitory effect of medicinal plants on TNF-$\alpha$ production from LPS-stimulated RAW264.7 cells. Nat. Prod. Sci., 5, 12-19 (1999)
  7. Choi, J. S., Chung, H. Y., Kang, S. S., Jung, M. J., Kim, J. W., No, J. K., and Jung, H. A., The structure-activity relationship of flavonoids as scavengers of peroxynitrite. Phytother. Res., 16, 232-235 (2002) https://doi.org/10.1002/ptr.828
  8. Cobb, M. and Goldsmith, E., How MAP kinases are regulated. J. Biol. Chem., 270, 14843-14846 (1999)
  9. Cushman, M., Nagarathnam, D., Burg, D. L., and Geahlen, R. L., Synthesis and protein-tyrosine kinase inhibitory activities of flavonoid analogues. J. Med. Chem., 34, 798-806 (1991) https://doi.org/10.1021/jm00106a047
  10. Faulkner, K. M., Liochev, S. I., and Fridovich, I., Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem., 269: 23471-23476 (1994)
  11. Geahlen, R. L., Koonchanok, N. M., McLaughlin, J. L., and Pratt, D. E., Inhibition of protein-tyrosine kinase activity by flavanoids and related compounds. J. Nat. Prod., 52, 982- 986 (1989) https://doi.org/10.1021/np50065a011
  12. Guha, M. and Mackman, N. LPS induction of gene expression in human monocytes. Cell Signal., 13, 85-94 (2001) https://doi.org/10.1016/S0898-6568(00)00149-2
  13. Haenen, G., Paquay, J., Korthouwer, R., and Bast, A., Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun., 23, 591-593 (1997) https://doi.org/10.1006/bbrc.1997.7016
  14. Heijnen, C. G., Haenen, G. R., van Acker, F. A., van der Vijgh, W. J., and Bast, A., Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol. In Vitro, 15, 3-6 (2001) https://doi.org/10.1016/S0887-2333(00)00053-9
  15. Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., and Nedeljkovic, S., Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch. Intern. Med., 155, 381-386 (1995) https://doi.org/10.1001/archinte.155.4.381
  16. Huie, R. and Padmaja, S., The reaction of NO and superoxide. Free Radic. Res. Commun., 18, 195-199 (1993) https://doi.org/10.3109/10715769309145868
  17. Jung, H. A., Kim, A. R., Chung, H. Y., and Choi, J. S., In vitro antioxidant activity of some selected Prunus species in Korea. Arch. Pharm. Res., 25, 865-872 (2002) https://doi.org/10.1007/BF02977006
  18. Kim, H. J., Yu, B. P., and Chung, H.Y., Molecular exploration of age-related NF-kappaB/IKK downregulation by calorie restriction in rat kidney. Free Radic. Biol. Med., 32, 991-1005 (2002) https://doi.org/10.1016/S0891-5849(02)00798-0
  19. Kim, H. K., Cheon, B. S., Kim, Y. H., Kim, S. Y., and Kim, H. P., Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol., 58, 759-765 (1999) https://doi.org/10.1016/S0006-2952(99)00160-4
  20. Kimura, S., Watanabe, K., Yajiri, Y., Motegi, T., Masuya, Y., Shibuki, K., Uchiyama, S., Homma, T., and Takahashi, H., Cerebrospinal fluid nitric oxide metabolites in painful diseases. Neuro. Report, 10, 275-279 (1999) https://doi.org/10.1097/00001756-199902050-00013
  21. Klotz, L. O. and Sies, H., Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol. Lett., 140-141, 125-132 (2003) https://doi.org/10.1016/S0378-4274(02)00511-8
  22. Kooy, N., Royall, J., Ischiropoulos, H., and Beckman, J., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Res. Commun.,16, 149-156 (1994)
  23. Kroncke, K., Fehsel, K., and Kolb-Bachofen, V., Inducible nitric oxide synthase in human disease. Clin. Exp. Immunol., 113, 147-156 (1998) https://doi.org/10.1046/j.1365-2249.1998.00648.x
  24. Le Marchand, L., Cancer preventive effects of flavonoids-a review. Biomed. Pharmacother., 56, 296-301 (2002) https://doi.org/10.1016/S0753-3322(02)00186-5
  25. Liang, Y., Huang, Y., Tsai, S., Lin-Shiau, S., Chwn, C., and Lin, J., Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis, 20, 1945-1952 (1999) https://doi.org/10.1093/carcin/20.10.1945
  26. Lopez-Lazaro, M., Flavonoids as anticancer agents: structureactivity relationship study. Curr. Med. Chem. Anti-Canc., Agents 2, 691-714 (2002) https://doi.org/10.2174/1568011023353714
  27. Mathy-Hartert, M., Deby-Dupont, G. P., Reginster, J. Y., Ayache, N., Pujol, J. P., and Henrotin, Y. E., Regulation by reactive oxygen species of interleukin-1beta, nitric oxide and prostaglandin E(2) production by human chondrocytes. Osteoarthritis Cartilage, 10, 547-555 (2002) https://doi.org/10.1053/joca.2002.0789
  28. Matsuda, H., Morikawa, T., Ando, S., Toguchida, I., and Yoshikawa, M., Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg. Med. Chem., 11, 1995-2000 (2003) https://doi.org/10.1016/S0968-0896(03)00067-1
  29. Mavis, R. and Stellwagen, E., Purification and subunit structure of glutathione reductase from bakers yeast. J. Biol. Chem., 243, 809-814 (1968)
  30. Middleton, E. Jr., Kandaswami, C., and Theoharides, T. C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673-751 (2000)
  31. Nagata, N., Momose, K., and Ishida, Y., Inhibitory effects of catecholamines and anti-oxidants on the fluorescence reaction of 4,5-diaminofluorescein, DAF-2, a novel indicator of nitric oxide. J. Biochem., 125, 658-661 (1999) https://doi.org/10.1093/oxfordjournals.jbchem.a022333
  32. Ohshima, H., Yoshie, Y., Auriol, S., and Gilibert, I., Antioxidant and pro-oxidant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxynitrite and nitroxyl anion. Free Radic. Biol. Med., 25, 1057-1065 (1998) https://doi.org/10.1016/S0891-5849(98)00141-5
  33. Olszanecki, R., Gebska, A., Kozlovski, V. I., and Gryglewski, R. J., Flavonoids and nitric oxide synthase. J. Physiol. Pharmacol., 53, 571-584 (2002)
  34. Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  35. Shen, S. C., Lee, W. R., Lin, H. Y., Huang, H. C., Ko, C. H., Yang, L. L., and Chen, Y. C., In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharideinduced nitric oxide and prostaglandin E(2) production. Eur. J. Pharmacol., 446, 187-194 (2002) https://doi.org/10.1016/S0014-2999(02)01792-2
  36. Stuehr, D., Mammalian nitric oxide synthase. Biochem. Biophys. Acta, 1441, 217-230 (1999)
  37. Tada, H., Shiho, O., Kuroshima, K., Koyama, M., and Tsukamoto, K., An improved colorimetric assay for interleukin 2. J. Immunol. Methods, 93, 157-165 (1986) https://doi.org/10.1016/0022-1759(86)90183-3
  38. Wheeler, A. P. and Bernard, G. R., Treating patients with severe sepsis. N. Engl. J. Med., 340, 207-214 (1999) https://doi.org/10.1056/NEJM199901213400307