• Title/Summary/Keyword: Nitrate ion

Search Result 337, Processing Time 0.032 seconds

Fluoride Removal from Aqueous Solutions using Industrial Waste Red Mud (산업폐기물인 적니를 이용한 불소 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.35-40
    • /
    • 2013
  • The present study was conducted to investigate the adsorption potential of red mud for fluoride removal. Different operation parameters such as the effect of contact time, initial concentration, pH, competing anions, seawater, adsorbent dose amount, and adsorbent mixture were studied. Nearly 3 hr was required to reach sorption equilibrium. Equilibrium sorption data were described well by Langmuir model and the maximum adsorption capacity of red mud was 5.28 mg/g. The fluoride adsorption at pH 3 was higher than in the pH range 5-9. The presence of anions such as sulfate, nitrate, phosphate, and bicarbonate had no significant effect on fluoride adsorption onto red mud. The fluoride removal by red mud was greater in seawater than deionized water, resulting from the presence of calcium and magnesium ion in seawater. The use of red mud alone was more effective for the removal of fluoride than mixing red mud with other industrial waste such as oyster shells, lime stone, and steel slag. This study showed that red mud has a potential application in the remediation of fluoride contaminated soil and groundwater.

Spectral, Electrochemical, Fluorescence, Kinetic and Anti-microbial Studies of Acyclic Schiff-base Gadolinium(III) Complexes

  • Vijayaraj, A.;Prabu, R.;Suresh, R.;Kumari, R. Sangeetha;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3581-3588
    • /
    • 2012
  • A new series of acyclic mononuclear gadolinium(III) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and gadolinium nitrate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show azomethine (CH=N) within the range of 410-420 nm. The fluorescence efficiency of Gd(III) ion in the cavity was completely quenched by the higher chain length ligands. Electrochemical studies of the complexes show irreversible one electron reduction process around -2.15 to -1.60 V The reduction potential of gadolinium(III) complexes shifts towards anodic directions respectively upon increasing the chain length. The catalytic activity of the gadolinium(III) complexes on the hydrolysis of 4-nitrophenylphosphate was determined. All gadolinium(III) complexes were screened for antibacterial activity.

Size Distribution of Ambient Aerosol Measured at a Coastal Site in Jeju Island (제주도 해안가에서 측정된 에어로졸의 성분별 입경분포 특성)

  • 이기호;양희준;허철구
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1043-1054
    • /
    • 2003
  • During the period from April to September 2002, the size distributions of ambient aerosol were measured at the coastal site at Hamduk in Jeju Island. Na$\^$+/, K$\^$+/, Mg$\^$2+/, Ca$\^$2+/and Cl$\^$-/ exhibited mostly a bimodal coarse mode size distribution, while ammonium and sulfate were mainly in the fine size range, with maximum at around 0.54$\mu\textrm{m}$. The average molar concentration ratio of ammonium to sulfate for fine particles was equal to 2.0${\pm}$0.9. Nitrate was evenly found in both the coarse and fine modes. Elements like Al, Fe, Cu, Mg, Na, Ti, Sr and Mn were dominant in coarse particles, with the maximum at around 5.25$\mu\textrm{m}$. S and Pb were mainly in the submicrometer size range. Other elements with a fine and coarse modes were V, Ni, Cu, Ba and Mo. The patterns of the size distributions of trace elements measured at the downtown in Jeju City were very similar to those at the coastal site in Hamduk. However, the amplitude of size fractional concentrations at Jeju City was narrower than that at Hamduk. While the mass median diameters for the chemical species originated from the natural origin such as marine and crust were relatively large, those for ammonium, sulfate, S and Pb were very small.

Effect of annealing atmosphere on the properties of chemically deposited Ag2S thin films

  • Pawar, S.M.;Shin, S.W.;Lokhande, C.D.;Kim, J.H.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.2-34.2
    • /
    • 2009
  • The silver sulphide (Ag2S) thin films have been chemically deposited from an alkaline medium (pH 8 to 10) by using a silver nitrate and thiourea as a Ag and S ion precursor sources. Ethylene Damine tetraacetic acid (EDTA) was used as a complexing agent. The effect of annealing atmosphere such as Ar, N2+H2S and O2 on the structural, morphological and optical properties of Ag2S thin films has been studied. The annealed films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques for the structural, morphological, and optical properties, respectively. XRD studies reveal that the as-deposited thin films are polycrystalline with monoclinic crystal structure, is converted in to silver oxide after air annealing. The surface morphology study shows that grains are uniformly distributed over the entire surface of the substrate. Optical absorption study shows the as-deposited Ag2S thin films with band gap energy of 0.92eV and after air annealing it is found to be 2.25 eV corresponding to silver oxide thin films.

  • PDF

Determination of Uranyl Nitrate with Several Ligands by Spectrophotometry

  • Showkat, Ali Md.;Zhang, Yu-Ping;Kim, Min Seok;Kim, Sang-Ho;Choi, Seong-Ho;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • Trace amount of uranyl (II) has been determined spectrophotometrically by measuring the optical density of the light blue yellowish coloured solutions formed by reaction between the metal ion and nicotinohydroxamic acid (NHx) in presence of different secondary ligands in strong isoamyl alcohol alkaline medium. The absorption maxima for both aqueous and extracted systems measured at their respective optimum pH were found to be 360 and 559 nm (DETA), 375 and 358 nm (EDA), 369 and 362 nm (piperidine), 354 and 341 nm (pyridine) and 363 and 336 nm (3 piperidine), 354 and 341 nm (pyridine) and 363 and 336 nm (3 - picoline), respectively at which Beer's law was obeyed. Effect of pH, reagent concentration, order of addition of reagent, time, temperature and solvent media on the absorption spectra have also been studied. Among the different systems studied, the shortest concentration range of uranyl(II) adhering to Beer's Law was 2.4 - 10.5 ppm observed for $UO_2(II)$ - NHx - DETA system in aqueous medium and also for iso amyl alcohol(IAA) extracted $UO_2$ - NHx - pyridine system was 2.4 - 7.8.

Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment (하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자)

  • Ahn, Kyu-Hong;Park, Ki-Young;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

Crystal Structure of β-Carbonic Anhydrase CafA from the Fungal Pathogen Aspergillus fumigatus

  • Kim, Subin;Yeon, Jungyoon;Sung, Jongmin;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.831-840
    • /
    • 2020
  • The β-class of carbonic anhydrases (β-CAs) are zinc metalloenzymes widely distributed in the fungal kingdom that play essential roles in growth, survival, differentiation, and virulence by catalyzing the reversible interconversion of carbon dioxide (CO2) and bicarbonate (HCO3-). Herein, we report the biochemical and crystallographic characterization of the β-CA CafA from the fungal pathogen Aspergillus fumigatus, the main causative agent of invasive aspergillosis. CafA exhibited apparent in vitro CO2 hydration activity in neutral to weak alkaline conditions, but little activity at acidic pH. The high-resolution crystal structure of CafA revealed a tetramer comprising a dimer of dimers, in which the catalytic zinc ion is tetrahedrally coordinated by three conserved residues (C119, H175, C178) and an acetate anion presumably acquired from the crystallization solution, indicating a freely accessible "open" conformation. Furthermore, knowledge of the structure of CafA in complex with the potent inhibitor acetazolamide, together with its functional intolerance of nitrate (NO3-) ions, could be exploited to develop new antifungal agents for the treatment of invasive aspergillosis.

Removal of a Heavy Metal from Wastewater using Membrane Process and Instrumental Analysis (Membrane 공정을 이용한 폐수로부터 중금속의 제거 및 기기분석)

  • Park, Kyung-Ai;Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.229-234
    • /
    • 1995
  • Membrane process has been applied widely to petroleum chemistry, fine chemistry, polymer, electronics, food, bioprocessing, and wastewater treatment process. Membrane process has advantage that there's no phase change through separation, energy consumption is smaller than other separation processes. And equipment investment and operation cost are inxpensive too. We prepared the silicone rubber membrane and then separated the heavy metal ion from wastewater. Silicone rubber membrane was prepared using a superitical fluid process and heavy metal ions were separated from the chromium nitrate, ferric sulfate, cupric sulfate, nickel sulfate aqueous solution. The pressure difference between top and bottom of separation apparatus was preserved by vacuum pump, and the removal amount of heavy metal at each separation step were analyzed by instrumental analysis, AAS. The surface and pore of silicone rubber membrane was investigated using SEM, and the capability of wastewater treatment using a silicone rubber membrane was proposed as calculated removal rate of heavy metal after comparing removal amount of heavy metal to amount of heavy metal in mother solution by AAS analysis.

  • PDF

Characteristics of Inorganic Ion Absorption of Strawberries Cultivated in Closed Hydroponic System with Different Substrates (고형배지를 이용한 순환식 딸기 수경재배에서 배지 종류별 무기이온 흡수 특성)

  • Jun, Ha-Joon;Hwang, Jin-Gyu;Liu, Shisheng;Jang, Mi-Soon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2011
  • This experiment was carried out to understand the characteristics of inorganic ion uptake of strawberries to establish a labor saving, environmentally sound closed hydroponic system. Nitrate nitrogen is absorbed in the perlite and granule rockwood with the almost same rate and in the cocopeat with a little bit higher concentration. At the early growth stage, phosphate was absorbed in comparatively high rate, but it is gradually declining to $4me{\cdot}L^{-1}$ in the three treatments except for reused medium. Four treatments showed different absorption rates for potassium, respectively, however, it became $3{\sim}5me{\cdot}L^{-1}$ gradually. But there was few sign to absorb potassium in the reused medium. High concentration of calcium was absorbed in the cocopeat medium and the lowest absorption rate in the granule rockwool, and it turned out to be $2{\sim}3me{\cdot}L^{-1}$ absorption concentration rate in the perlite. All three treatments showed $1me{\cdot}L^{-1}$ at the average absorption concentration rate of magnesium. Iron showed high absorption rate but it showed steadily 1~2 ppm absorption rate. Results of this experiment will be utilized for developing the new substrates for strawberry closed hydroponic system.

Characterization of tissue conditioner containing chitosan-doped silver nanoparticles (키토산-은나노 복합체가 함유된 의치 연성이장재 특성에 관한 연구)

  • Nam, Ki Young;Lee, Chul Jae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.275-281
    • /
    • 2020
  • Purpose: Development of a latent antimicrobial soft liner is strongly needed to overcome a possible inflammation related with its dimensional degrade or surface roughness. Modified tissue conditioner (TC) containing chitosan-doped silver nanoparticles (ChSN) complexes were synthesized and assessed for their characterizations. Materials and methods: ChSN were preliminarily synthesized from silver nitrate (AgNO3), sodium borohydride (NaBH4) as a reducing agent and chitosan biopolymer as a capping agent. Ultraviolet-visible and Fourier transform infrared spectroscopy were conducted to confirm the stable reduction of nanoparticles with chitosan. Modified TC blended with ChSN by 0 (control), 1.0, 3.0 and 5.0 % mass fraction were mechanically tested by ultimate tensile strength (UTS), silver ion elution and color stability (n=7). Results: At 24 hour and 7 day storage periods, UTS values were not significant (P>.05) as compared with pristine TC (control) and silver ion was detected with the dose-dependent values of ChSN incorporated. Color stability of TC were influenced by ChSN add, with the higher doses, the significantly greater color changes (P<.05). Conclusion: A stable synthesized ChSN was acquired and modified TC loading ChSN was characterized as silver ion releasing without detrimental physical property. For its clinical application, antimicrobial test, color control and multifactor investigations are still required.