• Title/Summary/Keyword: Nitrate content

Search Result 496, Processing Time 0.029 seconds

Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater (철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술)

  • Yoon, Ji-Young;Ko, Kyung-Seok;Yu, Yong-Jae;Chon, Chul-Min;Kim, Gyoo-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.589-601
    • /
    • 2010
  • Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

Predicting N2O Emission from Upland Cultivated with Pepper through Related Soil Parameters (온실가스 배출 파라메타를 이용한 고추밭 토양의 N2O 배출 예측)

  • Kim, Gun-Yeob;Song, Beom-Heon;Hyun, Byung-Keun;Shim, Kyo-Moon;Lee, Jeong-Taek;Lee, Jong-Sik;Kim, Won-Il;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.253-258
    • /
    • 2006
  • An empirical model of nitrous oxide emission from agricultural soil has been applied. It is based on the relationship between $N_2O$ and three soil parameters, soil mineral N(ammonium plus nitrate) content in the topsoil(0-15cm), soil water-field pore space, and soil temperature, determined in a study on clay loam and sandy loam at the pepper field in 2004. For comparisons between estimated and observed values of $N_2O$ emissions in the pepper field, it was investigated that $N_2O$ amount in the clay loam and sandy loam were overestimated as 12.2% and less estimated as 30%, respectively. However, $N_2O$ emissions were overestimated as 27.1% in the clay loam and 14.7% in the sandy loam from $N_2O$ gas samples collected once a week at the same time analyzing soil parameters. This modelling approach, based as it is well established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of $N_2O$ emissions.

Effects of Various Biodegradable Mulching Films on Growth, Yield, and Soil Environment in Soybean Cultivation (콩 재배지에서 다양한 생분해성 멀칭필름 종류별 작물 생육, 수량 및 토양환경에 미치는 영향)

  • Ye-Guon Kim;Yeon-Hu Woo;Hyun-Hwa Park;Do-Jin Lee;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.34-48
    • /
    • 2024
  • The objective of this study was to evaluate the safety of biodegradable mulching films in soybean (Glycine max) cultivation by measuring their effects on crop growth and yield, film decomposition and soil chemical and physical properties. In 2022 and 2023, plant height, branch number, chlorophyll contents, yield components, and yield of soybean did not vary significantly in areas using PE films and biodegradable mulching films. The light transmission rate of the biodegradable mulching films ranged from 6.4 to 15.8% when measured 112 days after soybean transplanting, and was higher, on average, in 2023 than in 2022. In both years, degradation of the biodegradable mulching films began 20 days after soybean transplantation and increased over time. In addition, remains of biodegradable mulching films were present in fields at soybean harvest and remained until 50 days after harvest. Decomposition rates of the biodegradable mulching films at 112 days after soybean transplanting ranged from 9.8 to 26.7% in 2022 and 13 to 36% in 2023. Although soil pH and EC varied based on the year and timing of measurements, there was no significant difference between areas that used biodegradable mulching films and PE films. Soil organic matter, nitrate and exchangeable cation contents such as Ca, Mg, and K were not significantly different in areas that used both PE films and biodegradable films. However, significantly higher levels of available phosphoric acid content were measured in areas that used biodegradable mulch films E, S, and T. Regardless of which films were used, there were no significant differences in the soil's physical properties. In 2022 and 2023, there was no difference between areas that used biodegradable mulch films and PE films. However, soil temperature in mulched areas was 2℃ higher and soil moisture was 5-15% higher than in non-mulched areas. Barley growth was not affected by being planted in soil that had been used for soybean cultivation with biodegradable films. Therefore, the biodegradable mulch films used in this study can be used without negatively affecting the growth, yield, and soil environment of soybeans.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

Studies on absorption of ammonium, nitrate-and urea-N by Jinheung and Tongil rice using labelled nitrogen (중질소(重窒素)를 이용(利用)한 진흥(振興)과 통일(統一)벼의 암모니움, 질산(窒酸) 및 요소태(尿素態) 질소(窒素)의 흡수특성(吸收特性) 연구(硏究))

  • Park, Hoon;Seok, Sun Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.225-233
    • /
    • 1978
  • Uptake and distribution of labelled urea, $NH{_4}^+$, and $NO{_3}^-$ by Tongil and Jinheung rice grown with each nitrogen source until ear formation stage under water culture system were as follows. 1. When the previous nitrogen source was same as one tested the uptake rate ($mg^{15}N/g$ d.w. root 2hrs, at $28^{\circ}C$ light) was great in the order of $NH_4$ >urea> $NO_3$ and higher (especially $NH_4$) in Tongil than in Jinheung. Rate limiting step (slowest) seems to be exist at R (root)${\rightarrow}$LS(leaf sheath) for urea, LS${\rightarrow}$LB(leaf blade) for $NH_4$ and M(medium)${\rightarrow}$R for $NO_3$. The fast step of translocation appeare to be at M${\rightarrow}$R for urea R${\rightarrow}$LS for $NH_4$ and LS${\rightarrow}$LB for $NO_3$. 2. The uptake rate of $NH_4$ by the urea-fed plant increased almost linearly from $18^{\circ}C$ via $28^{\circ}C$ to $38^{\circ}C$ in Tongil ($Q_{10}$=1.21 and 1.32 respectively) while no change in Jinheung ($Q_{10}$=0.99 and 1.00 respectively). It decreased by 12% in Jinheung under dark but uo change in Tongil. 3. The uptake rate of nitrogen source by different source-fed plant was great in the order of $NH_4{\rightarrow}^{15}NO_3$ $NO_3{\rightarrow}^{15}NH_4$, $urea{\rightarrow}^{15}NO_3$ and higher (especially $NH_4{\rightarrow}^{15}NO_3$) in Tongil. In the case of $urea{\rightarrow}^{15}NH_4$ it was same in $NH_4{\rightarrow}^{15}NO_3$ for Tongil and slightly lower than that in $NO_3{\rightarrow}^{15}NH_4$ for Jinheung. It was lower (especially Tongil) in $NH_4{\rightarrow}^{15}NO_3$ than in $NH_4{\rightarrow}^{15}NH_4 $ 4. The uptake rate (in $NH_4{\rightarrow}^{15}NO_3$) was higher during 15 minutes than during 2 hours and always higher in Tongil. 5. $^{15}N$ excess % and content in each part, and uptake rate of root seems to have their own significance relatling with metabolism and translocation respectively. The change of nitrogen nutritional environment and source preference of varieties were discussed in relation to field condition and efficient use of nitrogen fertilizer.

  • PDF

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF