• Title/Summary/Keyword: Nitrate contamination

Search Result 136, Processing Time 0.026 seconds

Case Study of Hydrochemical Contamination by Antimony Waste Disposal in Korea (국내 안티몬폐기물에 의한 수질화학적 오염 사례연구)

  • Jeong, Chan-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.471-482
    • /
    • 2008
  • This study was carried out to investigate the contamination characteristics of surface water, soil water and groundwater around and in antimony waste landfill site in Wonsung-ri, Yeonki-kun, Chungnam. The waste disposed in the study was excavated and transported to the other site in several years ago. For this study, we collected 35 water samples including groundwater, soil water and surface in the study site and also collected 2 groundwater samples from a comparison site. The data of chemical analysis of soil water samples show the antimony concentration of $48.75{\sim}74.81\;ppb$, which is much higher than groundwater in a comparison site and is highly excess than regulation level for a drinking water of some advanced countries. A relatively high antimony concentration was detected in three stream water samples nearby landfill site and two groundwater samples. Fe and Mn contents in soil water and stream water were measured as maxium 6.5 mg/L and 7.3 mg/L, respectively. Although other heavy metals of water samples in the study site are higher concentration than water sample of comparison site, their absolute levels are lower than regulation level for a drinking water. The chemical data of water samples are plotted widely from Ca - $HCO_3$ type to Ca - ($Cl +SO_4+NO_3$) type. Some groundwater show high contents of potassium and nitrate, which would come from fertilizer and sewage. Conclusively, some heavy metals including antimony have been still remained under the soil surface of the landfill site in the past. These metals have leaked out into nearby stream and groundwater system, and threaten the ecology, crops and the health of residents in this site. Therefore, the government have to prepare the strategy to prevent the diffusion of heavy metals into aquatic environment and have to process the reclamation work for contaminated site. It is also necessary to make a regulation level of the antimony concentration for a drinking water and soil environment in Korea.

Characteristics of Groundwater Contamination Caused by Seawater Intrusion and Agricultural Activity in Sacheon and Hadong Areas, Republic of Korea (해수침투와 농업활동에 의한 사천-하동 해안지역 지하수의 오염 특성)

  • Kim, Hyun-Ji;Hamm, Se-Yeong;Kim, Nam-Hoon;Cheong, Jae-Yeol;Lee, Jeong-Hwan;Jang, Sung
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.575-589
    • /
    • 2009
  • Groundwater has been extracted for irrigation in Sacheon-Hadong area, which is close to the South Sea. We analyzed chemical components of groundwater to examine the effects of seawater intrusion and agricultural activities in the study area. Most groundwater samples displayed the Na/Cl concentration ratios similar to that of seawater (0.55) with an increasing tendency of electrical conductivity ($227-7,910\;{\mu}S/cm$) towards the coast. In addition, statistical interpretation of the cumulative frequency curves of Cl and $HCO_3$ showed that 30.1% of the groundwater samples were highly affected by seawater intrusion. Groundwaters in the study area mostly belonged to the Ca-Cl and Na-Cl type, demonstrating that they were highly influenced by seawater intrusion and cation exchange. The result of oxygen-hydrogen isotope analysis demonstrated slightly higher $\delta^{18}O$ ((-8.53)-(-6.13)‰) and ${\delta}D$ ((-58.7)-(-43.7)‰) comparing to mean oxygen-hydrogen isotope ratios in Korea. As a result of nitrogen isotope analysis, the $\delta^{15}N-NO_3$ values ((-0.5)-(19.1)‰) indicate two major sources of nitrate pollution (organic nitrogen in soil and animal and human wastes) and mixed source of the two. However, denitrification may partly contribute as a source of nitrogen. According to factor analysis, four factors were identified among which factor 1 with an eigenvalue of 6.21 reflected the influence of seawater intrusion. Cluster analysis indicated the classification of groundwater into fresh, saline, and mixed ones.

Studies on Pollutant Concentrations in Ground Water and Their Behavior in Soils , Cheju Island. I. Changes in Nitrate-nitrogen Concentration in Ground-water near Hotel complexes and Business district During the Period form 1987 to 1992 (제주도 지하수중 오염물질의 농도와 토양중 그의 행동에 관한 연구 1. 호텔 및 상가주변에서의 지하수중 $NO_3-N$의 농도 변화 (1987-1992))

  • Hyun, Hae-Nam;Oh, Sang-Sil;Koh, Seung-Hak
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 1994
  • This study was conducted to investigate the degree of ground water pollution used for drinking water in Cheju Island. Samples were collected monthly from 31 wells of 10 divided areas and were analyzed for $NO_3-N$, pH, $SO_4$, Cl and hardness from 1987 to 1992. $NO_3-N$ concentrations in the samples, with the exception of sample No.23, did not exceed the standard concentration of drinking-water(10mg/l). $NO_3-N$ concentrations at area 10, unpolluted area, ranged from <1.0 mg/l to just over 1.2 mg/l. However, samples from the business district of the area 8 showed the concentrations ranging from 5 mg/l in 1987 to 8.l mg/l in 1992 with a mean of 6.8 mg/l, about 5 times higher than those from the area 10. $NO_3-N$ concentration in sample No. 23 increased from 4 mg/l in 1987 to 12.6 mg/l in 1991. Average rate of increase in $NO_3-N$ in samples of No. 1, 2, 4, and 8 at area 8 was about 1.2mg/l per year in the study period. The ground water at area 1, 2, 3, 4, 5, 6, and 7 showed in the range of pH 7 to 8.1, being similar to area 10. However, pH at area 8 was in the range of 6.6 to 7.3, being lower than that in the other areas. Hardness at area 1, 2, 3, 4, 5, and 6 were in the range of 30 to 80 mg/l, being higher than that at area 10. Those at area 8 were the highest among all the other areas tested. The results of this study suggest that $NO_3-N$ contamination in ground water could be a problem at hotel complexes and business district in Cheju Island.

  • PDF

Screening of Adsorbent to Reduce Salt Concentration in the Plastic Film House Soil under Continuous Vegetable Cultivation (시설채소재배지의 토양특성과 흡착제 종류별 염류경감 효과)

  • Ok, Yong-Sik;Yoo, Kyung-Yoal;Kim, Yoo-Bum;Chung, Doug-Young;Park, Yong-Ha;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2005
  • Salt accumulation in the plastic film house soils under continuous cultivation condition causes problems such as salt damages to plants, nitrate accumulation in vegetables, groundwater contamination, etc. due to excess application of fertilizers. Objective of this research was to find an optimum adsorbent to reduce salt concentration in the soil solution of plastic film house soils, where crop injuries have been observed due to the salt accumulation. The soils were significantly high in available P $(1,431{\sim}6,516mg\;kg^{-1}),\;NO_3-N\;(117.60{\sim}395.73mg\;kg^{-1})$, exchangeable Ca $(4.06{\sim}11.07\;cmol_c\;kg^{-1})$ and Mg $(2.59{\sim}18.76\;cmol_c\;kg^{-1})$, as compared to those of the average upland soils in Korea. Soils were treated with each of adsorbent such as ion-exchange resin, zeolite, rice bran, etc. at 2% level and prepared into saturated-paste samples. After equilibrium, soil solution was vacuum-extracted from the soil and measured for changes of the pH, EC, and concentrations of $Ca^{2+},\;Mg^{2+},\;K^+,\;Na^+,\;{NH_4}^+,\;{PO_4}^{3-}\;and\;{NO_3}^-$. Rice bran effectively removed ${PO_4}^{3-}\;and\;{NO_3}^-$ in the soil solution up to 100%. Efficiency was decreased in the orders of rice bran > ion-exchange resin > zeolite. Removal efficiencies of zeolite and ion-exchange resin for $Ca^{2+}$ were ranged from 1 to 65% and from 7 to 61%, respectively. Ion-exchange resin was also effective for removing $Mg^{2+},\;K^+,\;Na^+,\;and\;{NH_4}^+$. Overall results demonstrated that rice bran and ion-exchange resin could be applicable for salt accumulated soil to remove the respective anion and cation.

Arsenic Removal Using Iron-impregnated Ganular Activated Carbon (Fe-GAC) of Groundwater (철침착 입상활성탄(Fe-GAC)을 이용한 지하수 내 비소 제거기술)

  • Yoon, Ji-Young;Ko, Kyung-Seok;Yu, Yong-Jae;Chon, Chul-Min;Kim, Gyoo-Bum
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.589-601
    • /
    • 2010
  • Recently it has been frequently reported arsenic contamination of geologic origin in groundwater. The iron-impregnated ranular activated carbon (Fe-GAC) was developed for effective removal of arsenic from groundwater n the study. Fe-GACs were prepared by impregnating iron compounds into a supporting medium (GAC) with 0.05 M iron nitrate solution. The materials were used in arsenic adsorption isotherm tests to know the effect of iron impregnation time, batch kinetic tests to understand the influence of pH, and column tests to evaluate for the preliminary operation of water treatment system. The results showed that the minimum twelve hours of impregnation time were required for making the Fe-GAC with sufficient iron content for arsenic removal, confirmed by a high arsenic adsorption capacity evaluated in the isotherm tests. Most of the impregnated iron compounds were iron hydroxynitrate $Fe_4(OH)_{11}NO_3{\cdot}2H_2O$ but a mall quantity of hematite was also identified in X-ray diffraction(XRD) analysis. The batch isotherms of Fe-GAC for arsenic adsorption were well explained by Langmuir than Freundlich model and the iron contents of Fe-GAC have positive linear correlations on logarithmic plots with Freundlich distribution coefficients ($K_F$ and Langmuir maximum adsorption capacities ($Q_m$. The results of kinetic experiments suggested hat Fe-GAC had he excellent arsenic adsorption capacities regardless of all pH conditions except for pH 11 and could be used a promising adsorbents for groundwater arsenic removal considering the general groundwater pH range of 6-8. The pseudo-second order model, based on the assumption that the ate-limiting step might be chemisorption, provided the best correlation of the kinetic experimental data and explained the arsenic adsorption system f Fe-GAC. The column test was conducted to valuate the feasibility of Fe-GAC use and the operation parameters in arsenic groundwater treatment system. The parameters obtained from the column test were the retardation actor of 482.4 and the distribution coefficient of 581.1 L/mg which were similar values of 511.5-592.5 L/mg acquired from Freundlich batch isotherm model. The results of this study suggested that Fe-GAC could be used as promising adsorbent of arsenic removal in a small groundwater supply system with water treatment facility.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.