• Title/Summary/Keyword: Nitrate Leaching

Search Result 79, Processing Time 0.021 seconds

Evaluation of Meymeh Aquifer vulnerability to nitrate pollution by GIS and statistical methods

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Increasing the concentration of nitrate ions in the soil solution and then leaching it to underground aquifers increases the concentration of nitrate in the water, and can cause many health and ecological problems. This study was conducted to evaluate the vulnerability of Meymeh aquifer to nitrate pollution. In this research, sampling of 10 wells was performed according to standard sampling principles and analyzed in the laboratory by spectrophotometric method, then; the nitrate concentration zonation map was drawn by using intermediate models. In the drastic model, the effective parameters for assessing the vulnerability of groundwater aquifers, including the depth of ground water, pure feeding, aquifer environment, soil type, topography slope, non-saturated area and hydraulic conductivity. Which were prepared in the form of seven layers in the ARC GIS software, and by weighting and ranking and integrating these seven layers, the final map of groundwater vulnerability to contamination was prepared. Drastic index estimated for the region between 75-128. For verification of the model, nitrate concentration data in groundwater of the region were used, which showed a relative correlation between the concentration of nitrate and the prepared version of the model. A combination of two vulnerability map and nitrate concentration zonation was provided a qualitative aquifer classification map. According to this map, most of the study areas are within safe and low risk, and only a small portion of the Meymeh Aquifer, which has a nitrate concentration of more than 50 mg / L in groundwater, is classified in a hazardous area.

Regional-Scale Evaluation of Groundwater Susceptibility to Nitrate Contamination Based on Soil Survey Information (토양정보를 이용한 광역 지하수의 질산태 질소 오염 민감도 분포 분석)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Susceptibility assessment of groundwater contamination is a useful tool for many aspects of regional and local groundwater resources planning and management. It can be used to direct regulatory, monitoring, educational, and policy-making efforts to highly vulnerable areas. In this study, a semi process-based was proposed to evaluate relative susceptibilities to groundwater contamination by nitrate on a regional scale. Numerical simulation based on data from each soil series was done to model water flow within soil profiles that were related to groundwater contamination by nitrate. Relative vulnerability indices for each soil series were produced by manipulation of amount of leaching flux, amount of average water storage in a soil profile, and amount of average water storage change. These indices were designed to convey the trend of leaching flux and to maximize spatial resolution. The resulting vulnerability distribution map was used to locate highly vulnerable sites easily with an appropriate grouping the indices, and was then compared with those from groundwater nitrate concentrations monitored. An excellent agreement was obtained across nitrate concentrations from the highly vulnerable regions and those from the low to stable regions.

Effects of Horse Manure Compost Application Level on the Productivity of Italian Ryegrass and Soil Nitrate Leaching (마분 퇴비 시용 수준이 이탈리안 라이그라스 생산성과 용탈수 성분에 미치는 영향)

  • Yoo, Ji-Hyun;Park, Nam-Geon;Woo, Jae-Hoon;Ahn, Hee-Kwon;Yang, Byoung-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 2020
  • This study was conducted to figure out the productivity of Italian ryegrass(IRG) and leaching water characteristics based on horse manure compost level in Jeju. This study was conducted for about six months. Six treatments were established : non-fertilizer(NF), chemical fertilizer 100%(CF), horse manure compost 50% and chemical fertilizer 50% combination(Combination), horse manure compost with 50% of nitrogen (50%), 100% of nitrogen(100%), 150% of nitrogen(150%). The highest amount of dry matter yield of IRG was revealed in CF(11,965±564 kg/ha), and both 150% and Combination were second(p<0.05). Nitrate leaching tended to increase until the third analysis and then decreased. There were not significantly differences among mean nitrate concentrations. The findings of the study suggest that horse manure compost with 50% of nitrogen be applied for IRG as basal fertilization and then 50% of chemical fertilizer be applied as top fertilization.

Influence of Sewage Sludge Application on Soil Nitrate Distribution in a Clay Soil

  • Lee, Sang-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.70-73
    • /
    • 2003
  • Nitrate contamination in the aquatic systems is the primary indicator of poor agricultural management. The influence of sewage sludge application rates (0, 10, 25, 50 and 100 dry Mg/ha) on distribution of nitrate originating from the sewage sludge in soil profiles was investigated. Soil profile monitoring of nitrate was carried out with a Lakeland clay soil in 1997. Irrespectively of the sewage sludge application rates up to 50 dry Mg/ha, the concentration of $NO_3$-N at the 120 cm depth was below 10 mg/kg and the difference due to the amount of sewage sludge application was negligible at this depth. There was virtually no $NO_3$-N below 120 cm depth and this was confirmed by a deep sampling up to 300 cm depth. Most of the nitrate remained in the surface 60 cm of the soil. Below 120 cm depth nitrate concentration was very low because of the denitrification even at high sewage sludge rate of 100 dry Mg/ha. The $NO_3$-N concentrations in the soil fluctuated over the growing season due to plant uptake and denitrification. The risk of groundwater contamination by nitrate from sewage sludge application up to high rate of 100 dry Mg/ha was very low in a wheat grown clay soil with high water table ( < 3 m).

Slow Release Fertilizer Decreases Leaching Loss of Nitrogen in Sand-based Root Zone (완효성비료의 모래식재지반에 있어서 질소용탈의 감소)

  • Chen, Wei-Feng;Wei, Wang;Ying-Jie, Qi
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.177-182
    • /
    • 2007
  • When a football field is constructed using sand medium, the fertilizer management has to be adjusted because of the low nutrient holding capacity and higher leaching rate. The objective of this study was to test the effects of slow release fertilizers on Kentucky bluegrass (Poa pratensis L.) growth in simulated sport field rootzones with PVC pipe pots. Data of turfgrass color, uniformity, growth rate, biomass above ground, and the nitrate content in the leaching solution was collected at different growing stages and during four simulated rain fall periods. The result showed that the nutrient release rate of urea was the highest and that of controlled release nitrogen fertilizer was the lowest. Effects of the controlled release nitrogen fertilizer lasted 14 days more than other lawn fertilizers and 28 days longer than regular urea with acceptable quality levels of turf. The slow release fertilizer also restrained excessive growth of the grass, reduced the times of mowing. Slow release fertilizer used in this study reduced $NO_3$-N leaching by almost 50% at the beginning of turf establishment.

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

Environmental Friendly Function and Safe Food Production by Organic Agriculture in Europe (선진 유럽유기농업의 환경보전 기능과 안전농산물 생산-한국유기농업의 발전을 위한 농업정책적 제안-)

  • 정길생;손상목;이윤건
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.45-66
    • /
    • 1996
  • In Korea there is still no basic standard for organic agriculture and organic farmers in Korea do not follow the minimum requirements of IFOAM basic standard Most of them just practice the organic agriculture applying organic fertilizer, commercial seed without legume, rotation and green manure. But they believe this system is a absolutely environmental friendly agricultural system and it produce a safe agricultural product since they are not aware of the basic standard of organic agriculture at all. The overuse of organic fertilizer by some organic farmer have caused some severe problems risk for nitrate and phosphate leaching. In soil profile showed the potential risk for nitrate and phosphate leaching. In the paper, it is discussed on the environmental friendly function and the safe vegetable production by european organic agriculture which keeps the internationally recognized basic standards of organic agriculture. Therefore it is strongly recommended that korean organic farmer have to follow the IFOAM it is strongly in order to practice the environmental agriculture and produce the safe food. And it is also necessary to introduce to Korea the basic standard of organic agriculture which coincides with IFOAM's and Codex of FAO/WHO immediately if they really want to practice an organic agriculture in the country.

  • PDF

Assessment of Drainage Discharge and Nitrate-Nitrogen Loads According to Subsurface Drainage Design in Corn Cultivated Agricultural Land in Illinois, USA (미국 일리노이주 옥수수 재배 농경지 내 암거배수 시설 설계에 따른 배수량 및 질산성질소 배출 평가)

  • Hwang, Soonho;Jeong, Hanseok;Bhattarai, Rabin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.15-23
    • /
    • 2024
  • Subsurface drainage improves crop productivity in poorly drained soils but may also substantially contribute impairment of surface water quality due to excess leaching losses of nutrients like Nitrate-Nitrogen (NO3-N). This research presents preliminary findings from a 3-years tile depth and spacing study in Illinois state that includes three drain spacings implemented in 2 plots. We found that the plot with the narrower subsurface drainage (Case 1) exported more drainage water compared to the plot with the narrower subsurface drainage system (Case 2). The total drainage water from Case 1 plot showed 57% more compared to Case 2 plot. Whereas we observed that the plot with narrower drain spacing (Case 1) exported only 9% more NO3-N leaching losses compared to the wider plot (Case 2). The average corn yield was observed higher in plot Case 1 compared to Case 2. Especially, we observed about 7% higher corn yield in plot Case 1 compared to Case 2 plot in the relatively dried year (2022). The preliminary findings for this study suggest that subsurface drainage systems can be optimized to reduce nutrient losses while improving the crop productivity.

Fate of Nitrogen and Phosphorous in Hydroponic Waste Solution Applied to the Upland Soils (시설하우스 폐양액의 토양 처리에 따른 질소 및 인의 이동)

  • Yang, Jae-E.;Park, Chang-Jin;Yoo, Kyung-Yoal;Kim, Kyung-Hee;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.132-138
    • /
    • 2005
  • Objective of this research was to evaluate the fate of nitrogen and phosphorous in hydroponic waste solution from the plastic film house cultivation applied to the upland soil by column leaching and field experiment. The pH and EC of leachate were decreased by the reaction with the upland soil in the column leaching experiment. The EC and concentrations of $H^+,\;K^+,\;and\;{NH_4}^+$ of leachate were decreased as the column length (soil depth) was increased. But these were increased as the amounts of the hydroponic waste solution were increased field experiment growing red pepper (Capsicum annum L.) to monitor the nutrients movement using ion exchange resin capsule demonstrated that the nutrient concentration of soil solution was increased in the orders of $PO_4-P. Nitrate concentration of resin capsule inserted into the soil was relatively higher than other nutrients $(NH_4-N\;and\;PO_4-P)$ at the 45 cm of soil depth. The overall results demonstrated that the hydroponic waste solution could be recycled as plant nutrients to enhance fertility of soils. But nitrate leaching was a major factor for safe use of the hydroponic waste solution in soil.

Assessment of Nitrate Leaching from Cultivated Land by LEACHN (LEACHN을 이용한 경작지의 질소 유출 평가)

  • Jung, Young-Wook;Kim, Mee-Jeong;Oh, Dong-Sik;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.803-806
    • /
    • 2008
  • LEACHN is the computer simulation model which can be used to simulate field-scale N transformations and movement and has three organic pools (plant residue, manure, and soil humus), three inorganic pools (urea, nitrate and ammonium) and plant. Pot experiment operated May to October in 2004. LEACHN simulated the nitrogen movement and transformation in soil using method of PEST and trial and error.

  • PDF