• 제목/요약/키워드: Nimodipine

검색결과 44건 처리시간 0.021초

Effects of Kaempferol, an Antioxidant, on the Bioavailability and Pharmacokinetics of Nimodipine in Rats

  • Park, Ji-Won;Choi, Jin-Seok;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권5호
    • /
    • pp.301-307
    • /
    • 2011
  • The aim of this study was to investigate the effects of kaempferol on the pharmacokinetics of nimodipine in rats. Nimodipine and kaempferol interact with cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), and the increase in the use of health supplements may result in kaempferol being taken concomitantly with nimodipine as a combination therapy to treat orprevent cardiovascular disease. The effect of kaempferol on P-gp and CYP3A4 activity was evaluated and Pharmacokinetic parameters of nimodipine were determined in rats after an oral (12 mg/kg) and intravenous (3 mg/kg) administration of nimodipine to rats in the presence and absence of kaempferol (0.5, 2.5, and 10 mg/kg). Kaempferol inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of $17.1{\mu}M$. In addition, kaempferol significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, the area under the plasma concentration-time curve ($AUC_{0-\infty}$) and the peak plasma concentration ($C_{max}$) of nimodipine significantly increased, respectively. Consequently, the absolute bioavailability of nimodipine in the presence of kaempferol (2.5 and 10 mg/kg) was 29.1-33.3%, which was significantly enhanced compared to the oral control group (22.3%). Moreover, the relative bioavailability of nimodipine was 1.30- to 1.49-fold greater than that of the control group. The pharmacokinetics of intravenous nimodipine was not affected by kaempferol in contrast to those of oral nimodipine. Kaempferol significantly enhanced the oral bioavailability of nimodipine, which might be mainly due to inhibition of the CYP3A4-mediated metabolism of nimodipine in the small intestine and /or in the liver and to inhibition of the P-gp efflux transporter in the small intestine by kaempferol. The increase in oral bioavailability of nimodipine in the presence of kaempferol should be taken into consideration of potential drug interactions between nimodipine and kaempferol.

가토에서 니모디핀과 싸이크로스포린과의 약물상호작용 (Drug Interaction between Nimodipine and Cyclosporine in Rabbits)

  • 최준식;김재호
    • 약학회지
    • /
    • 제46권4호
    • /
    • pp.265-269
    • /
    • 2002
  • The purpose of this study was to report the pharmacokinetic changes of cyclosporine after oral administration of cyclosporine, 10 mg/kg, in rabbits coadministered or pretreated twice per day for 3 days with nimodipine, dose of 5 mg/kg. The area under the plasma concentration-time curve (AUC) of cyclosporine was significantly higher in rabbits pretreated with nimodipine than that in control rabbits (p<0.01), showing about 149% increased relative bioavailability. The peak plasma concentration (C$_{max}$), elimination half-life (t$_{1}$2/) and MRT of cyclosporine were increased significantly (p<0.05) in rabbits pretreated with nimodipine compared with those in control rabbits. This findings could be due to significant reduction of elimination rate constant and total body clearance by pretreated with nimodipine. The effects of nimodipine on the pharmacokinetics of oral cyclosporine were more considerable in rabbits pretreated with nimodipine compared with those in control rabbits. The results suggest that the dosage of cyclosporine should be adjusted when the drug would be coadministered chronically with nimodipine in a clinical situation.n.

토끼에서 나린진이 니모디핀의 생체이용률에 미치는 영향 (Effects of Naringin on the Bioavailability of Nimodipine in Rabbits)

  • 최동현;김현용;최준식
    • 한국임상약학회지
    • /
    • 제18권2호
    • /
    • pp.120-123
    • /
    • 2008
  • The purpose of this study was to investigate the effect of naringin, one of flavonoids, on the pharmacokinetics and bioavailability of nimodipine in rabbits. Pharmacokinetic parameters of nimodipine were determined in rabbits after oral administration of nimodipine (16 mg/kg) with or without naringin (1, 5 or 15 mg/kg). Nimodipine was analyzed by high performance liquid chromatography using Hypersil ODS column. Naringin significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC) and the peak concentration ($C_{max}$) of nimodipine at 5 and 15 mg/kg. The absolute bioavailability (AB%) of nimodipine by prescence of naringin (5 or 15 mg/kg) increased from 32.2-36.9% (p<0.05) compared to the control (22.0%). However, presence of naringin had no significant effect on the elimination rate constant ($K_{el}$) of nimodipine. There were no apparent changes of the time of peak concentration ($T_{max}$) of nimodipine by coadministration. These results suggest that the increased bioavailability and the significant changes of these pharmacokinetic parameters of nimodipine by naringin may be attributed to the potential of narigin to inhibit cytochrome P450 (CYP) 3A4 and P-glycoprotein efflux pump in the liver and intestinal mucosa.

  • PDF

Enhanced Nimodipine Bioavailability After Oral Administration of Nimodipine with Morin, a Flavonoid, in Rabbits

  • Choi Jun-Shik;Burm Jin-Pil
    • Archives of Pharmacal Research
    • /
    • 제29권4호
    • /
    • pp.333-338
    • /
    • 2006
  • The aim of this study was to investigate the effect of morin on the bioavailability of nimodipine after administering nimodipine (15 mg/kg) orally to rabbits either co-administered or pretreated with morin (2, 10 and 20 mg/kg). The plasma concentrations of nimodipine in the rabbits pretreated with morin were increased significantly (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg) compared with the control, but the plasma concentrations of nimodipine co-administered with morin were not significant. The areas under the plasma concentration-time curve (AUC) and the peak concentrations $(C_{max})$ of the nimodipine in the rabbits pretreated with morin were significantly higher (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg), but only the $C_{max}$ of nimodipine coadministered with morin 10 mg/kg was increased significantly (p<0.05). The absolute bioavailability $(A.B\%)$ of nimodipine in the rabbits pretreated with morin was significantly (p<0.05 at 10 mg/kg, p<0.01 at 20 mg/kg) higher $(54.1-65.0\%)$ than the control $(36.7\%)$. The increased bioavailability of nimodipine in the rabbits pretreated with morin might have been resulted from the morin, which inhibits the efflux pump P-glycoprotein and the first-pass metabolizing enzyme by cytochrome P-450 3A4 (CYP 3A4).

Nimodipine as a Potential Pharmacological Tool for Characterizing R-Type Calcium Currents

  • Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.511-519
    • /
    • 2001
  • Nimopidine, one of dihydropyridine derivatives, has been widely used to pharmacologically identify L-type Ca currents. In this study, it was tested if nimodipine is a selective blocker for L-type Ca currents in sensory neurons and heterologous system. In mouse dorsal root ganglion neurons (DRG), low concentrations of nimodipine $(<10\;{\mu}M),$ mainly targeting L-type Ca currents, blocked high-voltage-activated calcium channel currents by ${\sim}38%.$ Interestingly, high concentrations of nimodipine $(>10\;{\mu}M)$ further reduced the 'residual' currents in DRG neurons from ${\alpha}_{1E}$ knock-out mice, after blocking L-, N- and P/Q-type Ca currents with $10\;{\mu}M$ nimodipine, $1\;{\mu}M\;{\omega}-conotoxin$ GVIA and 200 nM ${\omega-agatoxin$ IVA, indicating inhibitory effects of nimodipine on R-type Ca currents. Nimodipine $(>10\;{\mu}M)$ also produced the inhibition of both low-voltage-activated calcium channel currents in DRG neurons and ${\alpha}_{1B}\;and\;{\alpha}_{1E}$ subunit based Ca channel currents in heterologous system. These results suggest that higher nimodipine $(>10\;{\mu}M)$ is not necessarily selective for L-type Ca currents. While care should be taken in using nimodipine for pharmacologically defining L-type Ca currents from native macroscopic Ca currents, nimodipine $(>10\;{\mu}M)$ could be a useful pharmacological tool for characterizing R-type Ca currents when combined with toxins blocking other types of Ca channels.

  • PDF

와파린의 약물동태학에 니모디핀의 영향 (Effects of Nimodipine on the Pharmacokinetics of Warfarin in Rats: A Possible Role of P-glycoprotein and CYP3A4 Inhibition by Nimodipine)

  • 문홍섭;이종기;범진필
    • 한국임상약학회지
    • /
    • 제23권3호
    • /
    • pp.206-212
    • /
    • 2013
  • Purpose: The aim of this study was to investigate the effect of nimodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Methods: Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of nimodipine (0.5 or 2 mg/kg) in rats. The effect of nimodipine on the P-glycoprotein as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Results: Nimodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of $10.2{\mu}M$. Compared to those animals in the oral control group (warfarin without nimodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.5 mg/kg, P<0.05; 2 mg/kg, P<0.01) by 31.3-57.6%, and the peak plasma concentration ($C_{max}$) was significantly higher (2 mg/kg, P<0.05) by 29.4% after oral administration of warfarin with nimodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.31- to 1.58-fold and the absolute bioavailability of warfarin with nimodipine was significantly greater by 64.1-76.9% compared to that in the control group (48.7%). In contrast, nimodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Conclusion: Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism rather than P-glycoprotein-mediated efflux by nimodipine.

티크로피딘과 니모디핀과의 약동학적 상호작용 (Pharmacokinetic Interaction between Ticlopidine and Nimodipine in Rats)

  • 김양우;최준식
    • 한국임상약학회지
    • /
    • 제20권3호
    • /
    • pp.200-204
    • /
    • 2010
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of nimodipine in rats. Pharmacokinetic parameters of nimodipine were determined in rats after oral administration of nimodipine (16 mg/kg) with or without ticlopidine (3 or 10 mg/kg). Ticlopidine inhibited cytochrome P450 (CYP)3A4 activity. Ticlopidine significantly (p<0.05, 10 mg/kg) increased the area under the plasma concentration-time curve (AUC) of nimodipine and ticlopidine significantly (p<0.05, 10 mg/kg) prolonged the terminal half-life ($t_{1/2}$) of nimodipine. Ticlopidine significantly (p<0.05, 10 mg/kg) decreased the total body clearance ($CL_t$). The absolute bioavailability (AB%) and relative bioavailability (RB%) of nimodipine by presence of ticlopidine were increased by 14% and by 42%, respectively, compared to the control. Based on these results, the increased bioavailability of nimodipine might be due to inhibition of the metabolizing enzyme cytochrome P450 (CYP)3A4 in the liver or intestinal mucosa and/or reducing total body clearance by ticlopidine.

흰쥐에 경구 및 정맥투여시 에피가로카테친이 니모디핀의 생체이용률에 미치는 영향 (Effects of Epigallocatechin Gallate on the Bioavailability of Nimodipine after Oral and Intravenous Administration in Rats)

  • 이종기;최준식;최동현
    • 약학회지
    • /
    • 제55권4호
    • /
    • pp.332-337
    • /
    • 2011
  • The purpose of this study was to investigate the effect of epigallocatechin gallate (EGCG) on the pharmacokinetics of nimodipine in rats. Pharmacokinetic parameters of nimodipine were determined in rats after oral and iv administration of nimodipine with or without EGCG and also the effect of EGCG on the cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp) activity were evaluated. EGCG inhibited CYP3A4 and P-gp activity. EGCG significantly increased the area under the plasma concentration-time curve (AUC) and peak plasma concentration ($C_{max}$) of nimodipine. The absolute bioavailability (AB%) and relative bioavailability (RB%) of nimodipine by EGCG were increased by 16% and by 48%, respectively, compared to the control. In contrast, EGCG did not affect the intravenous pharmacokinetics of nimodipine. Based on these results, the increased bioavailability of nimodipine might be due to inhibition of CYP3A4 in the small intestine and/or in the liver and inhibition of P-gp in the small intestine by EGCG.

The Pharmacokinetics of Nimodipine After Oral Administration in Rabbits with Hepatic Failure

  • Choi, Jun-Shik;Choi, In;Burm, Jin-Pil
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.19-22
    • /
    • 2006
  • The pharmacokinetics of nimodipine, following a single 16 mg/kg oral dose, was investigated in rabbits with hepatic failure induced by 0.5 mL/kg (mild), 1.0 mL/kg (moderate) and 2.0 mL/kg (severe) of carbon tetrachloride $(CCl_{4}$ : olive oil = 20 : 80, v/v). The plasma concentrations of nimodipine were determined by a high performance liquid chromatographic assay. The levels of sGOT and sGPT in rabbits with mild $(86.2{\pm}29.0\;and\;98.5{\pm}33.1\;unit/dL)$, moderate $(168.1{\pm}61.2\;and\;196.2{\pm}66.0\;unit/dL)$ and severe $(292.7{\pm}82.2\;and\;314.2{\pm}99.8\;unit/dL)$ hepatic failure were significantly increased compared to the control $(38.0{\pm}10.1\;and\;32.4{\pm}10.2\;unit/dL)$. The area under the plasma concentration-time curve (AUC) of nimodipine was significantly increased in mild $(131.7{\pm}28.1%)$, moderate $(168.8{\pm}32.8%)$ and severe $(204.6{\pm}58.3%)$ carbon tetrachloride-induced hepatic failure rabbits compared to the control (100%) rabbits. The volume of distribution $(V_{d})$ and the total body clearance $(CL_{t})$ of nimodipine were significantly decreased in all hepatic failure groups. The elimination rate constant $(K_{el})$ of nimodipine was significantly decreased in moderate and severe carbon tetrachloride-induced hepatic failure rabbits. There was a correlation between sGOT (y= 1.01x+241, r=0.993) or sGPT (y=0.92x +243, r=0.997) value and the AUC of nimodipine in the rabbits with hepatic failure. These findings suggest that the hepatic metabolism of nimodipine was inhibited by carbon tetrachloride-induced hepatic failure rabbits, resulting in the decrese in $V_{d}$ and $CL_{t}$ of nimodipine in the rabbits with mild, moderate and severe hepatic failure.

Neuroprotective Effects by Nimodipine Treatment in the Experimental Global Ischemic Rat Model: Real Time Estimation of Glutamate

  • Choi, Seok-Keun;Lee, Gi-Ja;Choi, Sam-Jin;Kim, Youn-Jung;Park, Hun-Kuk;Park, Bong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Objective: Glutamate is a key excitatory neurotransmitter in the brain, and its excessive release plays a key role in the development of neuronal injury. In order to define the effect of nimodipine on glutamate release, we monitored extracellular glutamate release in real-time in a global ischemia rat model with eleven vessel occlusion. Methods: Twelve rats were randomly divided into two groups: the ischemia group and the nimodipine treatment group. The changes of extracellular glutamate level were measured using microdialysis amperometric biosensor, in coincident with cerebral blood flow (CBF) and electroencephalogram. Nimodipine (0.025 ${\mu}g$/100 gm/min) was infused into lateral to the CBF probe, during the ischemic period. Also, we performed Nissl staining method to assess the neuroprotective effect of nimodipine. Results: During the ischemic period, the mean maximum change in glutamate concentration was $133.22{\pm}2.57\;{\mu}M$ in the ischemia group and $75.42{\pm}4.22\;{\mu}M$ (p<0.001) in the group treated with nimodipine. The total amount of glutamate released was significantly different (P<0.001) between groups during the ischemic period. The %cell viability in hippocampus was $47.50{\pm}5.64$ (p<0.005) in ischemia group, compared with sham group. But, the %cell viability in nimodipine treatment group was $95.46{\pm}6.60$ in hippocampus (p<0.005). Conclusion: From the real-time monitoring and Nissl staining results, we suggest that the nimodipine treatment is responsible for the protection of the neuronal cell death through the suppression of extracellular glutamate release in the 11-VO global ischemia model of rat.