• Title/Summary/Keyword: Nickel_Titanium

Search Result 212, Processing Time 0.029 seconds

Effectiveness of laser-engineered copper-nickel titanium versus superelastic nickel-titanium aligning archwires: A randomized clinical trial

  • Omar Khairullah Ahmed;Ammar Salim Kadhum
    • The korean journal of orthodontics
    • /
    • v.54 no.1
    • /
    • pp.16-25
    • /
    • 2024
  • Objective: To compare the effectiveness of laser-engineered copper-nickel titanium (SmartArch) and superelastic nickel-titanium (SENT) archwires in aligning teeth and inducing root resorption and pain experienced by patients. Methods: Two-arm parallel groups with a 1:1 allocation ratio were used. The participants were patients aged 11.5 years and older with 5-9 mm of mandibular anterior crowding who were indicated for non-extraction treatment. The primary outcome was alignment effectiveness, assessed using Little's irregularity index (LII) over 16 weeks with a single wire (0.016-inch) in the SmartArch group and 2 wires (0.014- and 0.018-inch) in the SENT group (8 weeks each). Secondary outcomes included root resorption evaluated by pre- and post-intervention periapical radiographs and pain levels recorded by the participants during the first week. Results: A total of 40 participants were randomly allocated into 2 groups; 33 completed the study and were analyzed (16 in the SmartArch group and 17 in the SENT group, aged 16.97 ± 4.05 years). The total LII decrease for the SmartArch and SENT groups was 5.63 mm and 5.29 mm, respectively, which was neither statistically nor clinically significant. Root resorption was not significantly different between the groups. The difference in pain levels was not statistically significant for the first 5 days following wire placement; however, there was a significant difference favoring the SENT group in the final 2 days. Conclusions: SmartArch and SENT archwires were similarly effective during the alignment phase of orthodontic treatment. Root resorption should be observed throughout the treatment with either wire. SmartArch wires demonstrated higher pain perception than SENT wires.

Corrosion Behavior of Stainless Steel 304, Titanium, Nickel and Aluminium in Non-Aqueous Electrolytes

  • Dilasari, Bonita;Park, Jesik;Kusumah, Priyandi;Kwon, Kyungjung;Lee, Churl Kyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.26-29
    • /
    • 2014
  • The corrosion behavior of stainless steel 304 (SS 304), titanium, nickel and aluminium is studied by immersion and anodic polarization tests in non-aqueous electrolytes. Tetraethyl ammonium tetrafluoroborate is used as a supporting electrolyte in the three kinds of solvents. The immersion test shows that chemical corrosion rate in propylene carbonate-based electrolyte is lower than those in acetonitrile- or ${\gamma}$-butyrolactone-based electrolytes. Surface analyses do not reveal any corrosion product formed after the immersion test. In the anodic polarization tests, a higher concentration of supporting electrolyte gives a higher current density. In addition, a higher temperature increases the current density in the active region and reduces the potential range in the passive region. SS 304 shows the highest corrosion potential while Al shows the lowest corrosion potential and the highest current density in all studied conditions. Based on the conducted corrosion tests, the corrosion resistance of metal substrates in the organic solvents can be sorted in descending order as follows: SS 304 - Ti - Ni - Al.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

ABILITY OF NICKEL-TITANIUM FILES IN MAINTAINING THE ORIGINAL CURVATURE OF A CURVED ROOT CANAL AND ITS ANALYSIS BY FINITE ELEMENT METHODS (만곡 근관 형성시 니켈-티타늄 파일의 만곡 유지 능력과 그에 대한 유한요소법적 분석)

  • Park, Han-Soo;Lim, Sung-Sam;Bae, Kwang-Shik;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.220-227
    • /
    • 1997
  • The purpose of our study is to evaluate the ability of nickel-titanium(NiTi) files in maintaining the original curvature of a curved root canal during canal preparation. Curved canals on translucent resin blocks were prepared with NiTi and stainless steel files, and they were placed at the platform which can reproduce the same position. The unprepared and prepared canal forms were accurately compared by double exposure technique of photography. By finite element methods we also analyzed stress distributions of NiTi and stainless steel files in a curved canal. The results were as follows : 1. NiTi files were excellent in maintaining the original curvature of a curved canal than stainless steel files after canal preparation. 2. The results of canal preparation with these files were well verified by the analysis of stress distributions using finite element methods.

  • PDF

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

The effect of temperature changes on force level of superelastic nickel-titanium archwires (온도 변화가 교정용 니켈-티타늄 호선의 하중값에 미치는 영향)

  • Chun, Kyoung-Ae;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.432-439
    • /
    • 2007
  • The purpose of this study was to evaluate the influence of intraoral temperature changes on the orthodontic force level of a superelastic nickel-titanium alloy wire. Methods: Nickel-titanium archwires of $0.016"{\times}0.022"$ thickness were tested with a three point bending test setup, and temperature changes were applied. The force level changes according to temperature changes were measured at a 1.5 mm deflection during the loading phase and a 1.5 mm deflection during the unloading phase from a deflection to 3.1mm. Ten cycles of thermal cycling from baseline $(37^{\circ}C)$ to cold $(20^{\circ}C)$ or hot $(50^{\circ}C)$temperature were applied. Results: Alter thermal cycling, the force level during the loading phase decreased and the force level during the unloading phase increased even after the temperature was changed to the initial $37^{\circ}C$. Conclusions: The results suggest that the orthodontic force level can not return to the initial force level after temperature changes. When applying superelastic nickel-titanium archwires, we must consider that a lighter force than the loading force and a heavier force than the unloading force will be applied after intraoral temperature changes caused by eating and drinking.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL (모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교)

  • Ha, Jung-Hong;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems. Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: $K3^{TM}$ (SybronEndo, Glendora, CA, USA), $M_{two}$ (VDW GmbH, Munchen, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper$^{(R)}$, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant. ProTaper$^{(R)}$ produced significantly more screw-in effects than any other instruments in the study (p < 0.001). $K3^{TM}$ produced significantly more screw-in effects than $M_{two}$, and ProFile$^{(R)}$ (p < 0.001). There was no significant difference among $M_{two}$, NRT, and ProFile$^{(R)}$ (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05). From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.

COMPARISON OF THE BOND STRENGTH OF CERAMICS FUSED TO TITANIUM AND Ni-Cr ALLOY (티타늄과 니켈-크롬 합금의 도재결합강도 비교)

  • Park Sae-Young;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.1
    • /
    • pp.89-98
    • /
    • 2003
  • Titanium requires special ceramic system for veneering. Low fusing dental ceramics with coefficients of thermal expansion matching that of titanium have been developed. The purpose of this study was determine the bond strengths between cast and noncast pure titanium and two commercial titanium porcelains, and to compare the results with a conventional nickel-chromium alloy-ceramic system. The bond strengths were determined using a 3-point flexure test. Three-point flexure specimens $25{\times}3{\times}0.5mm$ were prepared After removal of ${\alpha}-case$ layer, they were veneered with $8{\times}3{\times}1mm$ of ceramics at the center of the bar. Specimens were tested in a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The bond strengths between pure titanium and two commercial porcelains exceeded th lower limit of the bonding strength value in ISO 9693(25MPa). 2. There was no significant difference between cast and noncast titanium-porcelain bonds. 3. There was no significant difference between two commercial titanium porcelains. 4. The bond strengths of the titanium-porcelain systems ranged from 73% to 79% of that of the Ni-Cr-conventional porcelain system.