• 제목/요약/키워드: Nickel-oxide powders

검색결과 20건 처리시간 0.026초

적층 세라믹 콘덴서의 내부전극용 니켈 분말의 소결 특성 (Sintering Characteristics of Nickel Powders for Internal Electrode of Multilayer Ceramic Capacitors)

  • 이상근;최은영;이윤복;박성수;박희찬;김광호
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.779-784
    • /
    • 2003
  • Nickel powders were obtained by various preparation methods, and their sintering characteristics were investigated. Nickel powders made by wet chemical process (WCP) had a higher surface area and more narrow size distribution than that of chemical vapor deposition (CVD) method. Nickel-oxide powders by the WCP method were prepared at $200^{\circ}C$ for 3 hr. The oxidation behaviour of nickel-oxide powder is similar with that of the CVD method. Nickel powders made by the WCP method showed a higher shrinkage in the range of $600^{\circ}C$$900^{\circ}C$ than that of commercial powder made by the CVD method. The similar results were observed on the surface microstructure of sintered bodies by SEM measurements.

에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동 (Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications)

  • 김경태;우재열;유지훈;이혜문;임태수;최윤정;김창기
    • 한국입자에어로졸학회지
    • /
    • 제10권4호
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

초음파 습식 자기분류법을 이용한 MgxNiyZn1-x-yFe2O4 나노입자 제조 (Preparation of Nano-sized MgxNiyZn1-x-yFe2O4 by Ultrasonic Wet-Magnetic Separation Method)

  • 구문선;권혁주;최용
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.212-218
    • /
    • 2017
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classifying with an ultrasonic wet-magnetic separation unit to get high pure nano-sized particles. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders resulted in producing the powders with average size of 800 nm. The addition of a surfactant during the wet-magnetic separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 800 nm size were 3651 A/m, $53.92Am^2/kg$ and $4.0Am^2/kg$, respectively.

MgxNiyZn1-x-yFe2O4나노입자 제조를 위한 초음파 습식 자기분류법의 적용 (Application of Ultrasonic Wet-Magnetic Separation Method to Prepare Nano-sized MgxNiyZn1-x-yFe2O4)

  • 구문선;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classified by ultrasonic wet-magnetic separation method to get nano-sized particles with high purity. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders produced the powders with average size of $3.7-0.8{\mu}m$. The addition of a surfactant during the separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 810 nm size were 45.89 Oe, 53.92 emu/gOe, 0.4 emu/Oe, respectively.

  • PDF

$La_2O_3$와 NiO의 혼합물로부터 $LaNiO_3$의 메카노케미칼 합성 (Mechanochemical synthesis of $LaNiO_3$ from mixtures of $La_2O_3$ and NiO)

  • 김대영;서병준;손세모;김강언;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.621-624
    • /
    • 2002
  • Lanthanum nickel oxide$(LaNiO_3)$ powders have been prepared via a mechanochemical processing without any additional heat treatment. When a mixed lanthanum and nickel oxide was mechanically activated for 6 hours with 450 rpm, a stable and single phase perovskite powder was successfully synthesized and its crystallite size of about 90 nm is calculated by using the Scherrer equation.

  • PDF

Electrodeposited Nano-flakes of Manganese Oxide on Macroporous Ni Electrode Exhibiting High Pseudocapacitance

  • Gobal, F.;Jafarzadeh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권4호
    • /
    • pp.178-184
    • /
    • 2012
  • A porous nickel (P-Ni) substrate was prepared by selective leaching of zinc from pressed pellets containing powders of Ni & Zn in 4 M NaOH solution. Anodic deposition of manganese oxide onto the porous Ni substrate ($MnO_x$/P-Ni) formed nano-flakes of manganese oxide layers as revealed in SEM studies. Pseudocapacitance of this oxide electrode was evaluated by cyclic voltammetry (CV) and chronopotentiometry (CHP) in 2 M NaOH solution. The specific capacitance of the Mn oxide electrode was as high as 1515 F $g^{-1}$, which was ten times higher than Mn oxide deposited on a flat Ni-ribbon. 80% of capacity was retained after 200 charge/discharge cycles. The system showed no loss of activity in dry form over period of days. The impedance studies indicated highly conducting $MnO_x$/P-Ni substance and the obtained specific capacitance from impedance data showed good agreement with the charge/discharge measurements.

산화철 페촉매를 애용한 NiZn-페라이트의 합성 (Synthesis of NiZn-Ferrite from Waste Iron Oxide Catalyst)

  • 황연;이효숙;이우철
    • 한국결정학회지
    • /
    • 제12권1호
    • /
    • pp.20-24
    • /
    • 2001
  • NiZn-ferrite was synthesized usign waste iron oxide catalysts which were produced from styrene monomer process and buried underground as an industrial wastes. The spinel type ferrite was obtained by calcination and sintering of the mixture of finely ground waste catalysts, nickel oxide and zinc oxide powders. The sintered body of Ni/sub 0.5/Zn/sub 0.5/Fe₂O₄ composition at 1230℃ for 5 hours showed the density of 5.38g/㎤, and initial permeability of 59 at 1 kHz. Not only cerium oxide, which existed as a major component in the catalyst, but also unicorporated NiO and ZnO into spinel structure remained as second phases after sintering.

  • PDF

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

ZnO의 입도와 산소압이 고온연소합성법으로 제조된 Ni-Zn Ferrite 분말의 자기적 특성에 미치는 영향 (Effect of Zine Oxide Size and Oxygen Pressure on the Magnetic Properties of (Ni, Zn) Ferrite Powders Prepared by Self-propagating High Temperature Synthesis)

  • 최용;조남인;한유동
    • 한국자기학회지
    • /
    • 제9권2호
    • /
    • pp.78-84
    • /
    • 1999
  • 고온연소합성법(self-propagating high temperature synthesis)을 이용하여(Ni, Zn)Fe2O4 분말을 제조하고 초기 분말의 크기와 산소압에 따른 생성물의 미세조직과 자기적 특성을 조사하였다. (Ni, Zn) 페라이트 분체는 다양한 입도의 Fe, Fe2O3, NiO, ZnO의 원료 분말을 n-hexane 용액에서 습식으로 spex mill을 사용하여 5분 혼합하고 12$0^{\circ}C$ 진공로에서 24시간 건조한 후 0.5~10기압의 산소압에서 고온연소합성 반응으로 제조하였다. 성형 압력이 없는 경우 평균 연소온도와 연소속도는 최대 약 125$0^{\circ}C$와 9.8mm/sec였으며 산소압과 ZnO입도가 감소하면 감소하였다. 고온연소합성된 시료는 다공질 구조를 갖고 있으며 X-선 회절 시험으로 시편들의 spinel구조를 관찰하였다. ZnO입도와 산소압이 증가하면 보자력, 최대자화, 잔류자화, 각형비 및 큐리 온도는 각각 13.24Oe, 43.88emu/g, 1.27emu/g, 0.0034emu/gOe, 37.8$^{\circ}C$에서 11.83Oe, 68.87emu/g, 1.23emu/g, 0.00280emu/gOe, 439.$^{\circ}C$와 7.99Oe, 75.84emu/g, 0.791emu/g, 0.001937emu/gOe, 53.8$^{\circ}C$로 변화하였다. 산소압에 따른 겉보기 활성화에너지를 고려하면 페라이트의 연소합성 반응은 ZnO입도와 산소압에 크게 의존한다.

  • PDF