• 제목/요약/키워드: Nickel tape

검색결과 15건 처리시간 0.02초

얇은 연료극 구조가 용융탄산염 연료전지 성능에 미치는 영향 (Influence of the Thin Anode Geometry on the Performance of Molten Carbonate Fuel Cells)

  • 서동호;박동녘;윤성필;한종희;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.599-608
    • /
    • 2011
  • The Ni-Al anodes of the molten carbonate fuel cell (MCFC) with three different structures were successfully fabricated in order to reduce the thickness of the anode down to 0.3 mm; one was the non-supported anode made by a conventional tape casting method, and others were the supported anodes made by lamination or direct casting on the nickel screen. It was seen from the physical analyses and cell operation that the supported thin anodes made by direct casting showed good mechanical strength and cell performance because of a good contact between the anode materials and the support. The single cell using the above anode showed the cell voltage of 0.858 V at the current density of 150$mA/cm^2$ with the nitrogen cross-over of only 0.6% at the operation time of 1,000 h, which was similar to the performance of the conventional thick (0.7 mm) anode. The ability to utilize a thin configuration of anode should cut down the amount of nickel alloy and consequently reduce its manufacturing cost.

Surface Modification by Atmospheric Pressure DBDs Plasma: Application to Electroless Ni Plating on ABS Plates

  • Song, Hoshik;Choi, Jin Moon;Kim, Tae Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.133-138
    • /
    • 2013
  • Acrylonitrile-butadiene-styrene (ABS) plastic is a polymer material extensively used in electrical and electronic applications. Nickel (Ni) thin film was deposited on ABS by electroless plating, after its surface was treated and modified with atmospheric plasma generated by means of dielectric barrier discharges (DBDs) in air. The method in this study was developed as a pre-treatment for electroless plating using DBDs, and is a dry process featuring fewer processing steps and more environmentally friendliness than the chemical method. After ABS surfaces were modified, surface morphologies were observed using a scanning electron microscope (SEM) to check for any physical changes of the surfaces. Cross-sectional SEM images were taken to observe the binding characteristics between metallic films and ABS after metal plating. According to the SEM images, the depths of ABS by plasma are shallow compared to those modified by chemically treatment. The static contact angles were measured with deionized (DI) water droplets on the modified surfaces in order to observe for any changes in chemical activities and wettability. The surfaces modified by plasma showed smaller contact angles, and their modified states lasted longer than those modified by chemical etching. Adhesion strengths were measured using 3M tape (3M 810D standard) and by 90° peel-off tests. The peel-off test revealed the stronger adhesion of the Ni films on the plasma-modified surfaces than on the chemically modified surfaces. Thermal shock test was performed by changing the temperature drastically to see if any detachment of Ni film from ABS would occur due to the differences in thermal expansion coefficients between them. Only for the plasma-treated samples showed no separation of the Ni films from the ABS surfaces in tests. The adhesion strengths of metallic films on the ABS processed by the method developed in this study are better than those of the chemically processed films.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권4호
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

STRATEGIC RESEARCH AT ORNL FOR THE DEVELOPMENT OF ADVANCED COATED CONDUCTORS: PART - I

  • Christen, D.K.;Cantoni, C.;Feenstra, R.;Aytug, T.;Heatherly, L.;Kowalewski, M.M.;List, F.A.;Goyal, A.;Kroeger, D.M.
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.339-339
    • /
    • 2002
  • In the RABiTS approach to coated conductor development, successful (both economic and technological) depends on the refinement and optimization of each of three important components: the metal tape substrate, the buffer layer(s), and the HTS layer. Here we will report on the ORNL approach and progress in each of these areas. - Most applications will require metal tapes with low magnetic hysteresis, mechanical strength, and excellent crystalline texture. Some of these requirements are competing. We report on progress in obtaining a good combination of these characteristics on metal alloys of Ni-Cr and Ni-W. - The deposition of appropriate buffer layers is a crucial step. Recently, base research has shown that the presence of a stable sulfur superstructure present on the metal surface is needed for the nucleation and epitaxial growth of vapor-deposited seed buffer layers such as YSZ, CeO$_2$ and SrTiO$_3$. We report on the details and control of this superstructure for nickel tapes, as well as recent results for Cu and Ni-13%Cr. - Processes for deposition of the HTS coating must economically provide large values of the figure-of-merit for conductors, current x length. At ORNL, we have devoted efforts to a precursor/post-annealing approach to YBCO coatings, for which the deposition and reaction steps are separate. We describe motivation for and progress toward developing this approach. - Finally, we address some issues for the implementation of coated conductors in real applications, including the need for texture control and electrical stabilization of the HTS coating.

  • PDF

용융탄산염 연료전지용 in-situ 소결된 Ni-Al 합금 연료극 개발 (Development of in-situ Sintered Ni-Al Alloy Anode for Molten Carbonate Fuel Cell)

  • 천현아;윤성필;한종희;남석우;임태훈
    • 전기화학회지
    • /
    • 제9권3호
    • /
    • pp.124-131
    • /
    • 2006
  • 기존의 용융탄산염 연료전지용 연료극인 Ni-Cr전극은 제조과정이 복잡하며, 운전조건에서 전극의 소결과 creep현상으로 인하여 전극의 기공률과 두께가 감소하는 문제점이 있어 상용화에 걸림돌이 되고 있다. 이에 본 연구에서는 Ni-Cr계 전극보다 creep저항성이 우수하다고 알려져 있는 Ni-Al계 합금을 사용하였다. 또한 공정의 단순화로 비용을 절감시키기 위해, 소성과정을 제외하고 tape casting과 건조과정을 거친 green sheet를 단위전지에 장착하여 전처리 과정 중에 소결시키는 in-situ 소결법에 대해 연구하였다. 그러나 기존의 전처리 방법을 이용한 단위전지 평가에서 Ni-Al 합금의 상분리 현상으로 인해 기대하였던 creep저항성 향상을 확인하지 못했고, 운전중 Ni-Al합금 연료극에 단위전지의 구성요소인 matrix 기공크기보다 작은 기공(${\leq}0.4{\mu}m$)이 다량 생성되어 전해질 재분배를 일으켜 성능이 하락하는 문제점이 나타났다. 따라서 이러한 문제점을 해결하고자 전처리 조건을 변화시키며 실험을 수행하였다. 그 결과, 비활성 기체인 질소를 일정한 구간에 사용함으로써 기존 전처리에서 발생하였던 Ni-Al 합금의 상분리 현상을 억제할 수 있었으며 이로 인해 creep저항성 또한 향상시킬 수 있었다. 그러나 운전 중 생성되는 matrix기공크기보다 작은 기공(${\leq}0.4{\mu}m$) 형성비율은 억제할 수 없었다. 위의 전처리 조건을 가지고 단위전지 운전실험을 하였고, 전해질 함침비율을 조절함에 따라 성능을 향상시킬 수 있었으며 2000시간 동안 일정하게 유지함을 확인하였다. 이로부터 기존의 소성전극과 비교하여 많은 장점을 가지고 있는 in-situ 소결법의 가능성을 확인할 수 있었다.