• Title/Summary/Keyword: Nickel sulfide

Search Result 27, Processing Time 0.035 seconds

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

A study on the Synthesis of Nickel Hydroxide by Ammonium Sulfate from Waste Nickel-Cadmium Batteries (폐니켈-카드뮴 전지로부터 황산암모늄을 이용한 수산화니켈 제조 방안 연구)

  • Kim, Min-Jun;Park, Il-Jeong;Kim, Dae-Weon;Jeong, Hang-Chul
    • Resources Recycling
    • /
    • v.28 no.5
    • /
    • pp.51-59
    • /
    • 2019
  • This study focused on the synthesis of the nickel hydroxide using ammonium sulfate in leaching solution from waste nickel-cadmium batteries. The effect of pH, temperature and the input amount of ammonium sulfate in leaching solution was investigated. The ammonium nickel sulfate with high purity was obtained in acidic leaching solution and the solution temperature of $60^{\circ}C$. The suitable molar ratio of the input amount of ammonium sulfate to nickel in solution is 2:1. The impurity about 1.4 at.% of Cd was included in the nickel hydroxide precipitates when ammonium nickel sulfate was used. At the process using sodium sulfide which precipitates the cadmium in solution, nickel and iron compounds were precipitated together.

Methane Fermentation of the Paper Mill Sludge under Anaerobic Condition (제지슬러지의 혐기메탄발효)

  • Choi, Jong-Woo;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • The activated paper mill sludge was treated with WF and some additives (sodium sulfide, nickel nitrate, ethyl acetate) for methane fermentation at $35^{\circ}C$. Optmum C/N ratio was 60 out of three conditions (20, 30 and 60). The Period of 40% of methane content possibly ignition, was 2 days shorter than with non-treatment during 10 days. Nevertheless, the total amount of methane production showed the 1/8 level of control far the same period. The yield and content of methane were increased by the addition of sodium Sulfur and ethyl acetate. Sulfur was an essential factor in methane fermentation of paper mill sludge.

Preliminary Study on the Genesis and Nickel Potential of Ultramafic Rocks in Chungnam Yugu area, South Korea (충남 유구지역 초염기성암의 성인과 니켈 잠재성에 대한 예비연구)

  • Ijeung Kim;Sang-Mo Koh;Otgon-Erdene Davaasuren;Gi Moon Ahn;Chul-Ho Heo;Bum Han Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.323-336
    • /
    • 2023
  • We investigated the nickel potential and genesis of ultramafic rocks in the Yugu area to secure nickel resources in South Korea. The Yugu ultramafic rocks, located in the southwest of the Gyeonggi Massif, are characterized by spinel peridotite and exhibit strong serpentinization along their boundaries. The serpentinization is observed as olivine transformed to antigorite and chrysotile, while pentlandite, the nickel sulfide mineral, altered into millerite and awaruite. Serpentine displays distinct foliation, aligning subparallel to the ultramafic rock boundaries and foliation of Yugu gneiss. This suggests that the uplift of ultramafic rocks resulted in hydrothermal infiltration likely sourced from the Yugu gneiss metamorphism. The Yugu ultramafic rocks are residues after 5~18% partial melting of abyssal peridotite. Enriched light rare earth elements and Eu imply secondary metasomatism. Geochemistry suggests a link between the formation of Yugu ultramafic rock and the Triassic collision of the North and South China continents. The nickel content is around 0.17~0.21%, mainly contained in olivine and serpentine. Hence, in addition to the mineral processing study on the sulfide minerals, focused studies on oxide minerals for enhanced nickel recovery within the Yugu ultramafic rock are strongly suggested.

Hydrodesulfuriztion of Thiophene over Neodymium Added Nickel Catalysts (네오디뮴이 첨가된 니켈 촉매의 티오펜 탈황 반응)

  • Moon, Young-Hwan;Ihm, Son-Ki
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.913-924
    • /
    • 1996
  • In this study HDS(hydrodesulfurization) of thiophene was researched over nickel catalysts added with small amounts of neodymium which were prepared by different methods such as unsupported coprepricipitated NdNi catalysts, unsupported intermetallic $NdNi_5$ catalysts, and carbon supported NdNi catalyst. The HDS activity was remarkably increased when a small amounts of neodymium was added to unsupported coprecipitated Ni catalysts. Thus it was known that the role of Nd is important in HDS of thiophene of Ni catalysts. For the case of unsupported intermetallic $NdNi_5$, the intermetallic crystallinity was destroyed to oxide and sulfide after calcination and presulfidation respectively. The HDS activity of thiophene can be explained by surface area of unsupported catalysts. And Nd acts like as structural promoter keeping the high surface area of unsupported catalysts. The HDS activity was increased by each ten times based on 1 gr. of nickel in the order of unsupported intermetallic $NdNi_5$, unsupported coprecipitated NdNi, and carbon supported NdNi catalysts according to different preparation method of catalysts.

  • PDF

Removal of Copper from the Solution Containing Copper, Nickel, Cobalt and Iron (구리, 니켈, 코발트, 철 혼합용액(混合溶液)으로부터 구리의 제거(除去))

  • Park, Kyung Ho;Nam, Chul Woo;Kim, Hyun Ho;Barik, Smruti Prakash
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.48-54
    • /
    • 2013
  • The methods to separate and remove copper in the mixed solution ((399 ppm Cu, 208 ppm Fe, 15.3 g/L Ni, 2.1 g/L Co) with nickel, cobalt and iron were investigated. With hydroxide precipitation method, copper and iron ions were completely precipitated and removed from the solution at pH 7 while some nickel and cobalt also were precipitated. 99.75% copper could be precipitated and removed as copper sulfide from the solution with adding $Na_2S$ (1.25 w/v concentration) of 2 times equivalent of Cu at pH 1. Copper was selectively absorbed on TP 207 ion exchange resin at equilibrium pH 2.0 and could be eluted from copper-loaded resin using 5% $H_2SO_4$.

High Temperature Corrosion of Ni-17%W Coatings in Ar-0.2%SO2 Atmosphere

  • Lee, Dong-Bok;Kwon, Sik-Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.31-35
    • /
    • 2010
  • Coatings of Ni-17 at.%W were electroplated on a steel substrate, and their corrosion behavior was investigated between 600 and $800^{\circ}C$ in an Ar-0.2%$SO_2$ atmosphere. They delayed the corrosion of the steel substrate. They were corroded into an outer NiO-rich layer, and an inner ($WO_3+NiO+NiWO_4$)-mixed oxide layer. Below these oxide layers, a sulfide layer gradually formed.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

Upstream Risks in Domestic Battery Raw Material Supply Chain and Countermeasures in the Mineral Resource Exploration Sector in Korea (국내 배터리원료광종 공급망 업스트림 리스크와 광물자원탐사부문에서의 대응방안)

  • Oh, Il-Hwan;Heo, Chul-Ho;Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.399-406
    • /
    • 2022
  • In line with the megatrend of 2050 carbon neutrality, the amount of critical minerals used in clean-energy technology is expected to increase fourfold and sixfold, respectively, according to the Paris Agreement-based scenario as well as the 2050 carbon-neutrality scenario. And, in the case of Korea, in terms of the battery supply chain used for secondary batteries, the midstream that manufactures battery materials and battery cell packs shows strength, but the upstream that provides and processes raw materials is experiencing difficulties. The Korea Institute of Geoscience and Mineral Resources has established a strategy to secure lithium, nickel, and cobalt and is conducting surveys to respond to the upstream risk of these types of battery raw materials. In the case of lithium, exploration has been carried out in Uljin, Gyeongsangbuk-do since 2020, and by the end of 2021, the survey area was selected for precision exploration by synthesizing all exploration data and building a 3D model. Potential resources will be assessed in 2022. In the case of nickel, the prospective site will be selected by the end of 2022 through a preliminary survey targeting 10 nickel sulfide deposits that have been prospected in the past. In the case of cobalt, Boguk cobalt is known only in South Korea, but there is only a record that cobalt was produced as a minor constituent of hydrothermal deposit. According to the literature, a cobalt ore body was found in the contact area between serpentinite and granite, and a protocol for cobalt exploration in Korea will be established.