• Title/Summary/Keyword: Nickel recovery

Search Result 120, Processing Time 0.023 seconds

Fundamental Study on Solvent Sublation Using Salphen and Its Application for Separative Determination of Trace Ni(II), Co(II) and Cu(II) in Water Samples

  • Kim, Young-Sang;In, Gyo;Kim, Mi-Hyun;Choi, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1757-1762
    • /
    • 2006
  • A solvent sublation using salphen as a ligand was studied and applied for the determination of trace Ni(II), Co(II) and Cu(II) in water samples. The fundamental study was investigated by a solvent extraction process because the solvent sublation was done by extracting the floated analytes into an organic solvent from the aqueous solution. The salphen complexes of Ni(II), Co(II) and Cu(II) ions were formed in an alkaline solution of more than pH 8 and then they were extracted into m-xylene. It was known that the each metallic ion formed 1 : 1 complex with the salphen and the logarithmic values of extraction constants for the complexes were 3.3 5.1 as an average value. Based on the preliminary study, the procedure was fixed for the separation and concentration of the analytes in samples. Various conditions such as the pH of solutions, the influence of $NaClO_4$, the bubbling rate and time of $N_2$ gas, and the type of organic solvent were optimized. The metal-salphen complexes could be extracted into m-xylene from the solution of more than pH 8, but the pH could be shifted to acidic solution of pH 6 by the addition of $NaClO_4$. In addition, the solvent sublation efficiency of the analytes was increased by adding $NaClO_4$. The recovery of 97-115% was obtained in the spiked samples in which given amounts of 0.3 mg/L Ni(II), 0.8 mg/L Co(II) and 0.04 mg/L Cu(II) were added.

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Production of Fine Cobalt Metal Powders from Superalloy Scrap(1) (Treating Superalloy Scrap with Zinc) (Superalloy 스크랩으로부터 Co 미분말의 제조(1) (Superalloy 스크랩의 아연처리))

  • 박문경;이영근
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.52-59
    • /
    • 1995
  • Treating bulk superalloy scrap with molten zinc has been studled to facililate recycling and recovery- of cobalt.Superalloys investigated were the cobalt-base Mar-M-509 and X45 and the nickel-base Rene 80. Charges withZnlscrap ratlos of 1.5-6.5 were heated to 750-9002 far 1-7.5 hours in a nitrogen atmosphere. The moltenzinc dissolved superalloy scrap and zinc was removed by vacuum distillation at 850-Wk for 4-6 hours. Ithas been concluded that the optimum conditions of decomposition for Mar-M-509 and Rene 80 \"ere dissolutiontemperature of about 850k, Znlscrap ratlo of about 5, and dissalution time of about 5.5 hours. The zinc-treatedsuperalloy prouducts were friable and reacted rapidly with acid solutions. Leaching 9mm pieces of unalloyedMar-M-509 or Rene 80 with 5 times the stolchlometric amount oi 6N HCI at 90t ior 3 hours dissolved about1.5-7.270, while leachmg of the minus 20-mesh products dissolved about 89.0-93.0%.ved about 89.0-93.0%.

  • PDF

Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea (국내 인쇄회로기판의 재활용 상용화 기술 및 연구동향 분석)

  • An, HyeLan;Kang, Leeseung;Lee, Chan-Gi
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • Recently, the amount of electronic scrap is rapidly increasing due to the rapid growth of the electronics industry. Among the components of electronic scrap, the printed circuit board(PCB) is an important recycling target which includes common metals, precious metals, and rare metals such as gold, silver, copper, tin, nickel and so on. In Korea, however, PCB recycling technologies are mainly commercialized by some major companies, and other process quantities are not accurately counted. According to present situation, several urban mining companies, research institutes, and universities are conducting research on recovery of valuable metals from PCBs and/or reusing them as raw materials that is different from existing commercialization process developed by major companies. In this study, we analyzed not only current status of collection/disposal process and recycling of waste PCBs in Korea but also the trend of recycling technologies in order to help resource circulation from waste PCBs become more active.

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

A Study on the Electrolytic Process for Palladium Separation from Recovered Crude Metal of Electronic Waste (전자폐기물에서 회수된 조금속으로부터 팔라듐 분리를 위한 전해공정에 관한 연구)

  • Park, Sung Cheol;Han, Chul Woong;Kim, Yong Hwan;Jung, Yeon Jae;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.76-82
    • /
    • 2021
  • The separation of palladium from crude metal, which is obtained from electronic waste using pyrometallurgy was achieved through electrolysis. This was done to recover high-purity copper. The oxidation potentials of these metals are a fundamental part of the analysis of electrolytic separation of palladium and impurity metals. To achieve this, copper, iron, and nickel were dissolved in the electrolyte, and palladium and aluminum were found to be recoverable from anode slime. During the electrolysis for palladium separation, palladium was present in the anode slime and was obtained with a recovery of 97.46 % indicating almost no loss. 4N-grade copper was recovered from the electrodeposition layer at the cathode.

Recovery of Pure Ni(II) Compound by Precipitation from Hydrochloric Acid Solution Containing Si(IV) (규소(IV)가 함유된 염산용액으로부터 침전법에 의한 고순도 니켈(II)화합물의 회수)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.36-42
    • /
    • 2021
  • Spent lithium-ion batteries are treated by reduction-smelting at high temperatures to recover valuable metals. Solvent extraction and precipitation of the HCl leaching solution of reduction-smelted metallic alloys resulted in a filtrate containing Ni(II) and a small amount of Si(IV). Adsorption and precipitation experiments were conducted to recover pure Ni(II) compounds from the filtrate. Si(IV) was selectively loaded onto polyacrylamide, but this method did not efficiently filter the solution due to an increase in viscosity. The addition of Na2CO3 as a precipitant to the filtrate led to the simultaneous precipitation of Ni(II) and Si(IV). However, it was possible to recover nickel oxalate with a purity higher than 99.99% by selectively precipitating Ni(II) with the addition of Na2C2O4 as a precipitant.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

Pretreatment Effect on the Analysis of Insoluble Hexavalent Chromium (전처리방법에 따른 불용성 6가 크롬 분석에 관한 연구)

  • Lee, Eun Jung;Roh, Jae Hoon;Won, Jong Uk;Chun, Mi Ryonng;Cho, Myung Hwa;Kim, Chi Nyon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.292-300
    • /
    • 1996
  • Hexavalent chromium($Cr^{+6}$) compounds are considered to be particularly hazardous, primarily because of the associated risk of allergic reaction and cancer. The analytic method of hexavalent chromium such as the s-diphenylcarba-zide(DPC) method and all ether previously used methods are often made uncertain due to significant interferences from organic components. This report can provide a technique for the more rapid and simple determination of total hexavalent chromium. than other currently using methods. The s-diphenylcarbazide method proposed by the U.S. National Institute for Occupational Safety and Health has low recovery rate(15.67 - 48.20%) due to interference, iron chloride and nickel chloride. A microwave oven technique has high recovery rate(about 70%) of insoluble hexavalent chromium. For the difference of ionic charges of $Cr^{+3}$-ethylenediamine tetraacetic acid(EDTA) chelate and $CrO_4{^{-2}}$, we could detect them simultaneously by ion exchanged high performance liquid chromatography. The confirmation of $Cr^{+3}$ and $Cr^{+6}$ were checked by fraction collector and flameless atomic absorption spectrometer. We observed that the small amount of hexavalent chromium is converted to trivalent chromium due to enhancement of chromium reduction by $Fe^{+3}$ or $Ni^{+2}$. As a result of this study, on the analysis of insoluble hexavalent chromium with microwave oven was used for, it may be better and more precise analysis after pretreatment by 2% NaOH-3% $Na_2CO_3$ and then analysis UV-spectrophotometer. It should be done for various studies on insoluble hexavalent chromium on the basis work environmental monitoring so called welding, painting etc.

  • PDF

Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301 (강산성용액에서 Cyanex 301에 의한 Co 및 Ni 회수 연구)

  • Cho, Yeon-Chul;Kim, Ki-Hun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.28-35
    • /
    • 2021
  • An experiment was conducted to separate or recover Co and Ni using Cyanex 301 from process by-products and waste resources containing Co and Ni. To separate and recover Co and Ni from simulated leaching solutions, 10 v/v% Cyanex 301 was used as an extractant in this study; Li was not extracted. At equilibrium pH 1.5 and a phase ratio (A/O) of 1.0, 0.44% of Mg and 11.57% of Mn were extracted, and more than 99% of Co and Ni were extracted. McCabe-Thiele diagram analysis confirmed that more than 99.9% of Co and Ni could be extracted simultaneously through two-stage extraction with an extraction phase ratio (A/O) of 2. It was possible to extract Mg and Mn simultaneously through the scrubbing process. In the scrubbing process, more than 99% of Mg and 87% of Mn were scrubbed using 0.05 M of H2SO4, and 99.9% of Mg and more than 80% of Mn were scrubbed using 0.05 M of HCl. In the stripping process, 93% of Co and 5% of Ni were stripped selectively by 3.0 M of H2SO4. However, when 8.0 M of HCl was used as a stripping solution, more than 99.9% of Co and more than 90% of Ni were stripped simultaneously.