• Title/Summary/Keyword: Nickel chloride

Search Result 115, Processing Time 0.033 seconds

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Kim, Jeongsoo;Jo, Seung Hwan;Park, Dae-In;Bhavaraju, Sai;Kang, Sang Ook
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2016
  • The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.

A Study on Characteristics of the Ni-Pd Alloy Electroplating (Ni-Pd 합금 전해도금의 특성에 관한 연구)

  • Cho, Eun-Sang;Jung, Dae-Gon;Cho, Jin-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.253-259
    • /
    • 2015
  • The test equipment becomes more important with the development of semiconductor industry. MEMS probe is an important testing component to detect the defects from the generated electric signal when it contacts the metal pad of semiconductor devices. Ni-Pd alloy has been paid attention to as a candidate of MEMS probe material because of its high surface hardness and relatively low resistivity. In this study, electroplated Ni-Pd alloy has been prepared by using ethylene diamine as a complexing agent. Solid solution alloy coating could be formed when concentration of palladium chloride and current density were in the ranges of 1~5 mM and $0.2{\sim}1.5A/dm^2$, respectively. The increase of current density brought about an decrease in palladium content, which made both of lattice parameter and grain size smaller. As a result of grain refinement, high hardness could be obtained. However, surface cracking was observed due to residual stress when the current density was above $1.3A/dm^2$. When effects of heat treatment temperature on hardness and sheet resistance were investigated, the accompanied grain growth decreased both of them. The decrease of hardness remained stable at a temperature of $200^{\circ}C$. The sheet resistance was drastically reduced at $100^{\circ}C$. After that, it was found to become constant.

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • Park Su-Yeol;Sin Seung-Rim;Sin Jong-Il;O Se-Hwa;Jeon Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2005.05a
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF

Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio (Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가)

  • Kim, Yeon Hee;Jang, Ah Young;Kang, Dong Hoon;Ko, Dae Eun;Shin, Yong Taek;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

Properties of Non Sintered Cement Mortar using Ferro Nickel Slag (페로니켈 슬래그를 사용한 비소성 시멘트 모르타르의 특성)

  • Youn, Min-Sik;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.641-649
    • /
    • 2022
  • This study aims to completely develop a non sintered cement mortar using industrial by-products. To replace Portland cement, blast furnace slag, circulating fluidized bed fly ash, and pulverized coal fly ash were used, and natural aggregates were substituted with ferronickel slag. To understand the characteristics of the non sintered cement mortar to which ferronickel slag is applied, an experiment was conducted by classifying the particle size. Fluidity and workability were confirmed through the flow test, and bending and compressive strength tests were conducted at 3, 7, and 28 days of age. In addition, durability was identified through a chloride ion penetration test. Through the study, it is judged that the binder, which completely replaced cement and aggregate, has high potential of being used as a construction material. Notably, it was confirmed to be advantageous for strength and durability.

An experimental study on diameter increase of orthodontic wire by electroplating (전기도금을 이용한 스테인레스 스틸 선재의 직경 증가에 관한 실험적 연구)

  • Cho, Jin-Hyoung;Sung, Young-Eun;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.121-130
    • /
    • 2003
  • The purpose of this study was to evaluate the possibile clinical application of electroplating to increase diameter of an orthodontic wire, through examining the change of physical properties. The diameter of stainless steel orthodontic wire was increased from 0.016 inch to 0.018 inch by electroplating in a bath of nickel sulfate 100g/L, nickel chloride 60g/L, boric acid 30g/L, and sodium chloride 50g/L, under the conditions of 1.7V, $25\~29^{\circ}C\;and\;3.1\~3.3pH$. During the electroplating, the rate of diameter increase was measured every minute. To investigate uniformity, the diameter was measured at three different locations of each wire specimen aster electroplating. An X-ray diffraction test was performed to analyze the nature of the electroplated metal. Following heat treatment to improve adhesion between the wire and electroplated metal, a three-point bending test was conducted to compare stiffness, field strength, and ultimate strength among four wire groups; 0.016 inch, electroplated 016, electroplated and heat-treated 016, and 0.018 inch wires. Through the comparison of each wire group, following results were obtained. 1. In the load-deflection graph, the curve of the electroplated group was Placed between that of the 0.016 inch group and the 0.018 inch group, and the owe was closer to the 0.018 inch group by heat treatment. 2. In the electroplated and heat-treated 016 wire group, the values of stiffness, yield strength and ultimate strength showed higher tendency than in the original 0.016 Inch group. Stiffness and ultimate strength showed statistically significant differences between two groups. 3. Stiffness, yield strength, and ultimate strength of electroplated wire presented lower values than those of 0.018 inch wire group. 4. Stiffness, yield strength, and ultimate strength of electroplated and heat-treated wire showed higher tendency than those of electroplated wire group, and ultimate strength showed statistically significant difference between two groups. 5. After electroplating, the difference in diameter between the three locations was within $0.1\~0.3\%$ variation, and showed no statistical significance.

Preparation and Characterization of New NiO-ZrO2/WO3 Catalyst for Ethylene Dimerization (에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성)

  • Sohn, Jong Rack;Shin, Dong Cheol;Park, Man Young
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.1006-1014
    • /
    • 1996
  • A series of catalysts, $NiO-ZrO_2/WO_3$, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and $WO_3$ to $ZrO_2$ shifted the transition of $ZrO_2$ from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or $WO_3$) and $ZrO_2$. $NiO-ZrO_2$ without $WO_3$ was inactive for the ethylene dimerization, but $NiO-ZrO_2/WO_3$ was found to be very active even at room temperature. The high catalytic activity of $NiO-ZrO_2/WO_3$ was closely correlated with the increase of acid strength by the inductive effect of $WO_3$.

  • PDF

Influence of shape and finishing on the corrosion of palladium-based dental alloys

  • Milheiro, Ana;Muris, Joris;Kleverlaan, Cornelis J.;Feilzer, Albert J.
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the effects of the surface treatment and shape of the dental alloy on the composition of the prosthetic work and its metallic ion release in a corrosive medium after casting. MATERIALS AND METHODS. Orion Argos (Pd-Ag) and Orion Vesta (Pd-Cu) were used to cast two crowns and two disks. One of each was polished while the other was not. Two as-received alloys were also studied making a total of 5 specimens per alloy type. The specimens were submersed for 7 days in a lactic acid/sodium chloride solution (ISO standard 10271) and evaluated for surface structure characterization using SEM/EDAX. The solutions were quantitatively analysed for the presence of metal ions using ICP-MS and the results were statistically analysed with one-way ANOVA and a Tukey post-hoc test. RESULTS. Palladium is released from all specimens studied (range $0.06-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$), with the Pd-Cu alloy releasing the highest amounts. For both types of alloys, ion release of both disk and crown pairs were statistically different from the as-received alloy except for the Pd-Ag polished crown (P>.05). For both alloy type, disk-shaped pairs and unpolished specimens released the highest amounts of Pd ions (range $0.34-7.08{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). Interestingly, in solutions submerged with cast alloys trace amounts of unexpected elements were measured. CONCLUSION. Shape and surface treatment influence ion release from dental alloys; polishing is a determinant factor. The release rate of cast and polished Pd alloys is between $0.06-0.69{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$, which is close to or exceeding the EU Nickel Directive 94/27/EC compensated for the molecular mass of Pd ($0.4{\mu}g{\cdot}cm^{-2}{\cdot}week^{-1}$). The composition of the alloy does not represent the element release, therefore we recommend manufacturers to report element release after ISO standard corrosion tests beside the original composition.