• Title/Summary/Keyword: Nickel catalyst

Search Result 194, Processing Time 0.038 seconds

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

Selective Dehalogenative Homocoupling of Haloarylsulfonates by th Use of Palladium Catalyst

  • Lee, Tae Su;An, Jeong Ho;Kim, Jin Hwan;Bae, Jin Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.375-378
    • /
    • 2001
  • The palladium catalyzed dehalogenative homocoupling of haloarylsulfonates under reductive conditions has proceeded selectively depending on the type of the halogen. Thus, an iodo or a bromo leaving group of haloarylsulfonates was homocoupled to gi ve symmetrical biaryls in good yields with the sulfonate group intact, whereas a chloro leaving group gave no reaction under the conditions used. When the more reactive nickel catalyst was employed instead of the palladium catalyst in the reaction, both dehalogenative and desulfonative homocouplings of haloarylsulfonates occurred regardless of the type of the halogen used.

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

Kinetics of the Formation of Nickel-Phthalocyanine (Nickel-Phthalocyanine 생성의 반응속도론적 연구)

  • Bae, Kook-Jin;Hahn, Chi-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 1972
  • A mechanism for the ring formation of nickel phthalocyanine (Ni-Pc) has been proposed based on chemical kinetics. The effect of the catalyst on the rate was examined, and ammonium molybdate has been found to be the most effective. The reaction order of the ring formation was determined to be of the 1st order over all, with only the concentration of urea affecting the rate of the ring formation. All the results including thermodynamic parameters support a conclusion that the rate-determining step seems to be the enolization of the urea-catalyst transition complex, followed by fast decomposition of the tautomeric enolized urea into ammonia and isocyanic acid. These intermediates then reacted with the phthalic anhydride to form imino and diimino-phthalimide, which condense to form nickel phthalocyanine in the presence of the nickel cation.

  • PDF

Carbon Deposition on Nickel Catalyst for Pre-reforming of Propane (니켈 촉매를 이용한 프로판 예개질 반응의 탄소침적에 대한 연구)

  • Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.487-490
    • /
    • 2008
  • Temperature programmed oxidation (TPO) is used to characterize coke species deposited on commercial nickel catalyst, C11-PR during propane pre-reforming. Propane pre-reforming performed under various condition, S/C from 1.5 to 2.5 and temperature from $350^{\circ}C$ to $450^{\circ}C$. There are three kinds of coke species detected by TPO: (i) reactive coke, (ii) coke deposited on metal site and (iii) coke deposited on acid support. Coke deposited on metal and support are minimized although reactive coke is generated at temperature of $400^{\circ}C$ and S/C of 2.0. Reactive coke is expected to remove easily below temperature of $200^{\circ}C$. Therefore, optimized pre-reforming condition for propane is $400^{\circ}C$ and S/C of 2.0.

  • PDF

Hydrogen Electrode Performance with PTFE Bonded Raney Nickel Catalyst for Alkaline Fuel Cell (라니 니켈 촉매에 대한 알칼리형 연료전지용 수소극의 전극특성)

  • Lee, Hong-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.527-534
    • /
    • 1992
  • Raney nickel was used as catalyst in the hydrogen electrode for an alkaline fuel cell. The hydrogen electrode manufactured with the Raney nickel catalyst which was sintered at $700^{\circ}C$ was found to have the highest electrode performance. Using the Raney nickel powder of average particle size $90{\AA}$ for the electrode, the current density which had been measured was $450mA/cm^2$ at $80^{\circ}C$ using 6N KOH solution as an electrolyte. The effects of PTFE addition were investigated with CO-chemisorption, polarization curves and Tafel slope. CO-chemisorption had shown the optimum value when the Raney nickel was mixed with 5wt% of PTFE, but from the current density and Tafel slope at porous Raney nickel electrode, the appropriate value of PTFE addition was 10wt%. Recommendable Ni and Al portion for Raney nickel was 60 : 40 and loading amount was $0.25g/cm^2$. Also the influence of pressing pressure for manufacturing catalytic layer and for junction with gas diffusion layer was examined. The morphology of catalyst surface was investigated with SEM. The influence of reactivation time and heat-treatment temperature were also studied.

  • PDF

A Study on the Optimization of Ni-ZSM-5 Endothermic Catalyst Preparation for Decomposition of n-Dodecane (n-dodecane 분해를 위한 Ni-ZSM-5 흡열촉매 제조 최적화 연구)

  • Hyeonsu Jeong;Younghee Jang;Ye Hwan Lee;Sung Chul Kim;Byung Hun Jeong;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.619-625
    • /
    • 2023
  • In order to solve problems caused by the heat load of hypersonic aircraft, this study examined the optimization of the Si/Al ratio of the catalyst and nickel ion exchange to improve the performance of the hydrocarbon decomposition reaction (endothermic reaction). It was confirmed that the catalysts prepared through Si/Al ratio optimization and nickel ion exchange showed about 10% improvement in heat absorption performance compared to thermal cracking at 4 MPa and 550 ℃. FT-IR and NH3-TPD analyses were found to identify factors affecting activity changes, and it was observed that the Si/Al ratio of the HZSM-5 catalyst was closely correlated with acid site development and catalytic activity. In addition, TGA and O2-TPO analyses were conducted to observe the carbon deposition inhibition properties of the nickel-added catalyst.

A study on the Preparation of Hickel Yellow from Waste Ni-Catalyst (폐 Ni 촉매로 부터 Nickel Yellow의 조성에 관한 연구)

  • 김성빈
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.2 no.1
    • /
    • pp.71-75
    • /
    • 1984
  • NiNH$_{4}PO_{4}$ was Prepared from waste Ni catalyst used in hydrogenation of oil and fat, NiNH$_{4}PO_{4}$ was calcined at different temperature respectly 800, 1000, 1100$^{\circ}$C to prepare Nickel yellow. The results from this experiment are summerized as follow: 1) Nickel yellow formed at 1100$^{\circ}$C was most clearness yellow color from color analyzer data. 2) Nickel yellow was consist of ${\alpha}-Ni_{2}P_{2}O_{7}$, $Ni_{3}(PO_{4})_{2}$ from X-ray diffraction analysis. 3) The endothermic pick at 100$^{\circ}$C and exotherwic pick about 1050$^{\circ}$C on calcination of NiNH$_{4}PO_{4}$ were checked in DTA (difference thermal analysis data)

  • PDF

Selective growth of carbon notubes by patterning nickel catalyst metal (패터닝된 Ni 촉매 금속 위에서의 탄소나노튜브 성장)

  • Bang Y.Y.;Chang W.S.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.473-474
    • /
    • 2006
  • Aligned carbon nanotubes(CNTs) array were synthesized using direct current plasma-enhanced chemical vapor deposition. The nickel microgrids catalyzed the growth of carbon nanotubes which take on the area of the nickel microgrids. Selective growth of areas of nanotubes was achieved by patterning the nickel film. CNTs were grown on the pretreated substrates at 30% $C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters about 20 nanometers and lengths approximately 720 nanometers were obtained. Morphologies of carbon nanotubes were observed by FE-SEM and TEM.

  • PDF