• Title/Summary/Keyword: NiO catalyst

Search Result 274, Processing Time 0.024 seconds

Decomposition Study of Acetaldehyde by Metal-oxide Catalysts (금속산화물 촉매에 의한 $CH_3CHO$의 분해반응 연구)

  • Lee, Chang-Seop;Kim, Young-Eun;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.25-30
    • /
    • 2007
  • The catalysts for decomposition reaction of acetaldehyde were investigated. The catalysts were prepared with transition metal Ni, Mo, Al on ${\gamma}-Al_2O_3$ support by impregnation method. Physio-chemical properties of catalysts were characterized by SEM-EDS, XRD, XPS, BET and TPR techniques. The conversion efficiency of catalysts for acetaldehyde was measured in the temperature range of $150{\sim}500^{\circ}C$ by GC through the micro reactor system. The 8 wt% $Ni/{\gamma}-Al_2O_3$ was found to be the most active catalyst of mono-metal catalysts tested, and the 1-3 wt% $Ni-Al/{\gamma}-Al_2O_3$ showed higher conversion efficiency than other bimetallic catalysts.

  • PDF

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

Effects of La addition to Ni/$CeO_2$ Methane Partial Oxidation Catalysts (메탄 부분산화반응 Ni/$CeO_2$ 촉매에 LA 첨가의 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.29-36
    • /
    • 2010
  • The effects of La addition to Ni/$CeO_2$ methane partial oxidation catalysts were investigated. Catalysts were prepared by the impregnation and urea methods. In the preparation of catalysts, La content was changed from 1 wt% to 3wt%. Catalysts that contain 2wt% La showed the highest methane conversion of about 80% and CO selectivity of 84% and $H_2$ selectivity of 70%. This result may be stemmed from that, when La content is 2wt%, a fluorite oxide-type structure is well formed and carbon deposition is also decreased. Among the catalysts, 2.5wt% Ni/Ce(La)Ox showed the highest catalytic activity. From the experiment of changing reaction temperature with 2.5wt% Ni/Ce(La)Ox catalyst, it was found that the optimum reaction temperature is $750^{\circ}C$ and at this temperature methane conversion was about 90%, CO and $H_2$ selectivities were 94 and 80%, respectively.

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

The Effect of Y at Ni-YSZ Catalysts for the Application to the Process of Methane Chemical-Looping Reforming (메탄을 이용한 매체 순환 개질 시스템을 위한 Ni-YSZ 촉매에서의 Y에 따른 촉매 반응 특성 연구)

  • KIM, HEESEON;JEON, YUKWON;HWANG, JUSOON;SONG, SOONHO;SHUL, YONG-GUN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2015
  • Nickel based oxygen transfer materials supported on two different YSZs were tested to evaluate their performance in methane chemical-looping reforming. The oxygen transfer materials of YSZs were selected with different amount of the doped yittrium in the $ZrO_2$ structure. The yittrium of 8 mol% stabilized the zirconia oxide to a cubic structure compare to the 3 mol% doping, which is known to be a good for oxygen transfer. Various nickel amounts (16wt.%, 32wt.%, 48wt.%) were loaded on the selected supports. The nickel amount of 32% shows the optimized catalyst structure with good physical properties and reducibility from the XRD, BET and H2-TPR analysis, especially when the support of 8YSZ was used. From the methane chemical-looping reforming, hydrogen was produced by methane decomposition catalyzed by Ni on both YSZs. Comparing two YSZ supports of 3YSZ and 8YSZ during the cycling tests, the catalyst with 8YSZ (Ni 32%) exhibits not only the higher methane conversion and hydrogen production but also a faster reaction rate reaching to the stable point.

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • Seo, Ok-Gyun;Hwang, Jae-Seong;O, Pil-Geon;Gang, Hyeon-Cheol;Jeong, Hui-Su;Kim, -Chan;Kim, Dae-Gyun;Kim, Yun-Hui;Lee, Su-Ung;Kim, Gi-Ho;Jeong, Geon-Yeong;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

  • Shabani-Shayeh, Javad;Ehsani, Ali;Jafarian, Majid
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2014
  • Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Nickel-Catalyzed Coupling of Arenesulfonates with Primary Alkylmagnesium Halides

  • Cho, Chul-Hee;Sun, Myung-Chul;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1410-1414
    • /
    • 2005
  • Neopentyl arenesulfonates reacted with primary alkylmagnesium halides in the presence of $(PPh_3)_2NiCl_2$ to produce the corresponding alkylarenes. The efficiency of this coupling reaction considerably depends on the nature of catalyst and solvent. Highest yield was obtained by using three equivalents of Grignard reagent to a mixture of $(PPh_3)_2NiCl_2$ and arenesulfonate in refluxing $Et_2O$. This reaction represents a novel method allowing the efficient and creative substitution of sulfur-containing groups in aromatic compounds. It also shows that the alkyloxysulfonyl group might be a suitable alternative to halides and triflate in some circumstances.

Study on Characteristic of Reforming with Catalyst Using Plasmatron (플라즈마트론을 이용한 촉매 개질 특성 연구)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2005
  • The purpose of this paper is to investigate the optimal condition of the Syngas production by reforming of fuel using plasmatron. Plasma was generated by air and arc discharge. The effects of applied steam, $CO_2$ or Ni-catalyst on fuel conversion, as well as hydrogen yield and $H_2$/CO ratio were studied. When the variations of $O_2$/fuel ratio, $H_2O$/fuel flow ratio and $CO_2$/fuel flow ratio were $0.94{\sim}1.48$, $4.3{\sim}10$ and $0.8{\sim}3.05$, respectively. Under the condition mentioned above, result of $H_2O$/fuel flow ratio was maximum $H_2$ concentration, or $28.2{\sim}31.6%$, and result of $H_2O$/fuel flow ratio with catalyst was minimum CO concentration or $6.6{\sim}7.1%$. and $H_2$/CO ratio were $3.89{\sim}4.86$.